The Chemistry Maths Book

Erich Steiner

University of Exeter

Second Edition 2008

Solutions

Chapter 21 Probability and statistics
 21.1 Concepts
 21.2 Descriptive statistics
 21.3 Frequency and probability
 21.4 Combinations of probabilities
 21.5 The binomial distribution
 21.6 Permutations and combinations
 21.7 Continuous distributions
 21.8 The Gaussian distribution
 21.9 More than one variable
 21.10 Least squares
 21.11 Sample statistics
Section 21.2

1. The following data consists of the numbers of heads obtained from 10 tosses of a coin:
 5, 5, 4, 4, 7, 4, 3, 7, 6, 4, 2, 5, 6, 4, 5, 3, 5, 4, 2, 6, 7, 2, 4, 5, 6,
 5, 6, 4, 3, 4, 4, 5, 5, 6, 7, 5, 3, 6, 5, 5, 6, 7, 9, 4, 7, 9, 8, 8, 5, 10

 Construct (i) a frequency table, (ii) a frequency bar chart.

 (i) Table 1
<table>
<thead>
<tr>
<th>Result</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

2. The following data consists of percentage marks achieved by 60 students in an examination:
 66, 68, 70, 48, 56, 54, 48, 47, 45, 53, 73, 60, 68, 75, 61, 62, 61, 61, 52, 59,
 58, 56, 58, 69, 48, 62, 72, 71, 49, 69, 59, 48, 64, 59, 53, 62, 66, 55, 41, 66,
 60, 38, 54, 69, 60, 53, 60, 64, 57, 54, 73, 46, 73, 58, 50, 66, 37, 60, 47, 70

 Construct (i) a class frequency table for classes of width 5, (ii) the corresponding frequency histogram.

 (i) Table 2
<table>
<thead>
<tr>
<th>Class</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 − 40</td>
<td>2</td>
</tr>
<tr>
<td>41 − 45</td>
<td>2</td>
</tr>
<tr>
<td>46 − 50</td>
<td>9</td>
</tr>
<tr>
<td>51 − 55</td>
<td>8</td>
</tr>
<tr>
<td>56 − 60</td>
<td>14</td>
</tr>
<tr>
<td>61 − 65</td>
<td>8</td>
</tr>
<tr>
<td>66 − 70</td>
<td>11</td>
</tr>
<tr>
<td>71 − 75</td>
<td>6</td>
</tr>
</tbody>
</table>
3. Calculate the mean, mode, and median of the data in Exercise 1.

Table 3 is a summary of the properties of the data in Exercise 1, to be used here and in Exercises 5 and 6.

\[
\begin{array}{cccccc}
 i & x_i & n_i & n_i x_i & n_i (x_i - \bar{x})^2 & n_i x_i^3 \\
 0 & 0 & 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 & 0 \\
 2 & 3 & 6 & 31.105 & 12 & 24 \\
 3 & 4 & 12 & 19.714 & 36 & 108 \\
 4 & 11 & 44 & 16.372 & 176 & 704 \\
 5 & 13 & 65 & 0.629 & 325 & 1625 \\
 6 & 8 & 48 & 4.867 & 288 & 1728 \\
 7 & 2 & 16 & 15.457 & 128 & 1024 \\
 8 & 2 & 18 & 28.577 & 162 & 1458 \\
 9 & 1 & 10 & 22.848 & 100 & 1000 \\
\end{array}
\]

The mean values are
\[
\bar{x} = \frac{1}{50} \sum_{i=1}^{50} x_i = 5.2200 \\
V = \frac{1}{50} \sum_{i=1}^{50} (x_i - \bar{x})^2 = 3.1716 \\
\bar{x}^2 = 30.420 \\
\bar{x}^3 = 194.58
\]

The mean value of the data given in Table 1 is
\[
\bar{x} = \frac{1}{50} \sum_{i=1}^{50} n_i x_i = 5.22
\]

The mode and median are both 5.

4. Calculate the mean, mode, and median of the data in Exercise 2 (i) using the raw (ungrouped) data, (ii) using the data grouped in classes of width 5.

(i) For the raw data in Exercise 2, if \(x_i \) are the 60 individual values,
\[
\bar{x} = \frac{1}{60} \sum_{i=1}^{60} x_i = \frac{1}{60} \left[66 + 68 + 70 + 48 + \cdots + 70 \right] = 58.68
\]

The most frequent value, the mode, is 60; for the even number of values, the median is the mean 59.5 of the two central values 59 and 60.

(ii) For the grouped data in Table 2,
\[
\bar{x} = \frac{1}{60} \sum_{i=1}^{8} n_i x_i = \frac{1}{60} (2 \times 38 + 2 \times 43 + 9 \times 48 + 8 \times 53 + 14 \times 58 + 8 \times 63 + 11 \times 68 + 6 \times 73) = 58.67
\]
5. Calculate the variance and standard deviation of the data in Exercise 1.

The variance is (column 4 of Table 3 in Exercise 3)

\[V(x) = \frac{1}{50} \sum_{i=0}^{10} n_i (x_i - \overline{x})^2 = 3.172 \]

The corresponding standard deviation is \(s = \sqrt{V} = 1.781 \)

6. For the data in Exercise 1, (i) calculate \(\overline{x}, x^2, \) and \(x^3 \), (ii) use equations (21.7) and (21.9) to compute the standard deviation and the skewness.

(i) By Table 3 of Exercise 3,

\[\overline{x} = \frac{1}{50} \sum_{i=0}^{10} n_i x_i = 5.2200, \quad x^2 = \frac{1}{50} \sum_{i=0}^{10} n_i x_i^2 = 30.4200, \quad x^3 = \frac{1}{50} \sum_{i=0}^{10} n_i x_i^3 = 194.58 \]

(ii) For the standard deviation,

\[V = x^2 - \overline{x}^2 = 30.420 - 27.25 = 3.1716 \quad \Rightarrow \quad s = \sqrt{V} = 1.781 \]

The skewness is

\[\gamma = \frac{1}{s^3} \left(x^3 - 3\overline{x} x^2 + 2\overline{x}^3 \right) = \frac{1}{1.7809^3} \left(194.58 - 3 \times 5.2200 \times 30.4200 + 2 \times 5.2200 \right) = 0.474 \]

Section 21.4

7. A set of 10 balls consists of 6 red balls, 3 blue, and 1 yellow. If a ball is drawn at random, find the probability that it is (i) red, (ii) yellow, (iii) red or yellow, (iv) not blue, (v) not yellow.

(i) \(P(\text{red}) = 6/10 = 0.6 \) \quad (ii) \(P(\text{yellow}) = 1/10 = 0.1 \)

(iii) \(P(\text{red or yellow}) = P(\text{red}) + P(\text{yellow}) = 0.6 + 0.1 = 0.7 \)

(iv) \(P(\text{not blue}) = 1 - P(\text{blue}) = 1 - 0.3 = 0.7 = P(\text{red or yellow}) \)

(v) \(P(\text{not yellow}) = 1 - P(\text{yellow}) = 1 - 0.1 = 0.9 \)
8. A set of 50 numbered discs consists of 8 ones, 12 twos, 14 threes, 7 fours, and 9 fives. If one disc is drawn at random, what is the probability that its number is (i) 2, (ii) 4, (iii) 2 or 4, (iv) \(\leq 4 \), (v) odd.

We have probabilities

\[
P(1) = \frac{8}{50} = 0.16, \quad P(2) = 0.24, \quad P(3) = 0.28, \quad P(4) = 0.14, \quad P(5) = 0.18
\]

Then

(i) \(P(2) = 0.24 \)

(ii) \(P(4) = 0.14 \)

(iii) \(P(2 \text{ or } 4) = P(2) + P(4) = 0.24 + 0.14 = 0.38 \)

(iv) \(P(\text{odd}) = P(1) + P(3) + P(5) = 0.62 \)

9. Find the probabilities \(P(2) \) to \(P(12) \) of all the possible outcomes of two throws of a die.

Each of 36 equally probable outcomes has probability \(\frac{1}{6} \times \frac{1}{6} = \frac{1}{36} \). If \(P(k, l) \) is the probability of \(k \) followed by \(l \), then

\[
P(2) = P(1, 1) = \frac{1}{36}
\]

\[
P(3) = P(1, 2) + P(2, 1) = \frac{2}{36}
\]

\[
P(4) = P(1, 3) + P(3, 1) + P(2, 2) = \frac{3}{36}
\]

\[
P(5) = P(1, 4) + P(4, 1) + P(2, 3) + P(3, 2) = \frac{4}{36}
\]

\[
P(6) = P(1, 5) + P(5, 1) + P(2, 4) + P(4, 2) + P(3, 3) = \frac{5}{36}
\]

\[
P(7) = P(1, 6) + P(6, 1) + P(5, 2) + P(2, 5) + P(3, 4) + P(4, 3) = \frac{6}{36}
\]

\[
P(8) = P(2, 6) + P(6, 2) + P(3, 5) + P(5, 3) + P(4, 4) = \frac{5}{36} = P(6)
\]

\[
P(9) = P(5) = \frac{4}{36}
\]

\[
P(10) = P(4) = \frac{3}{36}
\]

\[
P(11) = P(3) = \frac{2}{36}
\]

\[
P(12) = P(2) = \frac{1}{36}
\]
10 Find the probability of the following total scores from three throws of a die: (i) 4, (ii) 8, (iii) 4 or 8, (iv) more than 15.

Each of $6^3 = 216$ equally probable outcomes has probability $\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{216}$. Let $P(k,l,m)$ be the probability of k followed by l followed by m. Then, those equal to

(i) 4 are $(2,1,1)$, $(1,2,1)$, $(1,1,2)$

Therefore $P(4) = \frac{3}{216}$

(ii) 8 are $(6,1,1)$, $(1,6,1)$, $(1,1,6)$, $(5,2,1)$, $(5,1,2)$, $(2,5,1)$, $(2,1,5)$, $(1,2,5)$, $(1,5,3)$, $(4,3,1)$, $(4,1,3)$, $(3,4,1)$, $(3,1,4)$, $(1,4,3)$, $(1,3,4)$, $(4,2,2)$, $(2,4,2)$, $(2,2,4)$, $(3,3,2)$, $(2,3,3)$

Therefore $P(8) = \frac{21}{216}$

(iii) $P(4 \text{ or } 8) = P(4) + P(8) = \frac{24}{216}$

(iv) $P(>15) = P(16 \text{ or } 17 \text{ or } 18)$, with outcomes

16: $(5,5,6)$, $(5,6,5)$, $(6,5,5)$, $(6,6,4)$, $(4,6,6)$
17: $(6,6,5)$, $(5,6,6)$
18: $(6,6,6)$

Therefore $P(>15) = \frac{10}{216}$

11 A particle can be in three states with energies ε_0, ε_1, and ε_2 ($\varepsilon_0 < \varepsilon_1 < \varepsilon_2$), and probability distribution $P_i = e^{-\varepsilon_i/kT}/q$ at temperature T. The quantity q is called the particle partition function.

(i) Express q in terms of T and the energies (use $\sum_i P_i = 1$). (ii) Find the probability distribution in the limit (a) $T \to 0$, (b) $T \to \infty$. (iii) Find the (combined) probability distribution for a system of three independent particles.

(i) The quantity $P_i = e^{-\varepsilon_i/kT}/q$ is the probability that the particle be in state with energy ε_i. The (total) probability that the particle be in some state is unity (for certainty). Therefore

$$1 = \sum_{i=0}^{2} P_i = \frac{1}{q} \left[e^{-\varepsilon_0/kT} + e^{-\varepsilon_1/kT} + e^{-\varepsilon_2/kT} \right]$$

$$\therefore q = e^{-\varepsilon_0/kT} + e^{-\varepsilon_1/kT} + e^{-\varepsilon_2/kT}$$
(ii) We have $e^{-(\varepsilon_i - \varepsilon_j)/kT} \to 0$ as $T \to 0$ if $\varepsilon_i > \varepsilon_j$. Then

(a) $T \to 0$: $P_0 = \frac{e^{-\varepsilon_0/kT}}{e^{-\varepsilon_0/kT} + e^{-\varepsilon_1/kT} + e^{-\varepsilon_2/kT}} = \frac{1}{1 + e^{-(\varepsilon_0 - \varepsilon_1)/kT} + e^{-(\varepsilon_0 - \varepsilon_2)/kT}} \to 1$

$P_1 = \frac{e^{-\varepsilon_1/kT}}{e^{-\varepsilon_0/kT} + e^{-\varepsilon_1/kT} + e^{-\varepsilon_2/kT}} = \frac{1}{1 + e^{-(\varepsilon_0 - \varepsilon_2)/kT} + e^{-(\varepsilon_0 - \varepsilon_1)/kT}} \to 0$

$P_2 = \frac{e^{-\varepsilon_2/kT}}{e^{-\varepsilon_0/kT} + e^{-\varepsilon_1/kT} + e^{-\varepsilon_2/kT}} = \frac{1}{1 + e^{-(\varepsilon_0 - \varepsilon_1)/kT} + e^{-(\varepsilon_0 - \varepsilon_2)/kT}} \to 0$

(b) $T \to \infty$: We have $e^{-j/kT} \to 1$ as $T \to \infty$. Therefore

$q = e^{-\varepsilon_0/kT} + e^{-\varepsilon_1/kT} + e^{-\varepsilon_2/kT} \to 3$

$P_i = \frac{e^{-\varepsilon_i/kT}}{q} \to \frac{1}{3}$, all i

(iii) For independent particles,

$P_{i,j,k} = P_i \times P_j \times P_k = \frac{e^{-(\varepsilon_i + \varepsilon_j + \varepsilon_k)/kT}}{q^3}$

Section 21.5

12 Find the probability that at least 3 heads are obtained from 5 tosses of (i) an unbiased coin, (ii) a coin with probability 0.6 of coming up tails.

The probability that m heads are obtained from 5 tosses is

$P_m = \binom{5}{m} \times p^m q^{5-m} = \frac{5!}{m!(5-m)!} p^m q^{5-m}$

where p is the probability of heads and $q = 1 - p$ that of tails. The probability of at least 3 heads in 5 tosses is

$P(\geq 3H) = P_3 + P_4 + P_5 = 10 p^3 q^2 + 5 p^4 q + p^5$

(i) $p = q = 1/2$:

$P(\geq 3H) = 16 \times \left(\frac{1}{2}\right)^5 = \frac{1}{2}$

(ii) $p = 0.4$, $q = 0.6$:

$P(\geq 3H) = 10 \times (0.4)^3 (0.6)^2 + 5 \times (0.4)^4 (0.6) + (0.4)^5$

$= 0.2304 + 0.0768 + 0.01034 = 0.31754$

© E Steiner 2008
13. A system that can exist in a number of states with energies \(E_0 < E_1 < E_2 < \cdots \) has probability 0.1 of being in an excited state (with \(E > E_0 \)). Find the probability that in 10 independent observations, the system is found in the ground state (with \(E = E_0 \)) (i) every time, (ii) only 5 times, (iii) at least 8 times.

The probability that the system be in the ground state \(m \) times in 10 observations is

\[
P_m = \binom{10}{m} p_g^m p_e^{10-m} = \frac{10!}{m!(10-m)!} (0.9)^m (0.1)^{10-m}
\]

where \(p_g = 0.9 \) is the probability of the ground state and \(p_e = 0.1 \) that of an excited state. Then

(i) \(m = 10 \):

\[
P_{10} = (0.9)^{10} \approx 0.3487
\]

(ii) \(m = 5 \):

\[
P_5 = \binom{10}{5} (0.9)^5 (0.1)^5 \approx 0.0015
\]

(iii) \(m \geq 8 \):

\[
P(\geq 8) = P_8 + P_9 + P_{10} = 45 \times (0.9)^8 (0.1)^2 + 10 \times (0.9)^9 (0.1) + (0.9)^{10}
\]

\[
\approx 0.1937 + 0.3874 + 0.3487 = 0.9298
\]

14. Use the probability distribution of the outcomes of throwing a pair of dice, from Exercise 9, to calculate the probability that two throws of a pair of dice have outcome (i) \(8+12 \) (one eight and one twelve), (ii) \(9+11 \), (iii) \(10+10 \). Hence (iv) find the probability of outcome 20 from two throws of two dice.

There are \(k = 11 \) possible outcomes of a throw of two dice, with probabilities \(p(2) \) to \(p(12) \) given by Exercise 9. For two throws of two dice, a total outcome 20 is obtained from throws \(8+12 \) (one eight and one twelve), \(9+11 \) and \(10+10 \). Therefore

\[
P(20) = P(8+12) + P(9+11) + P(10+10)
\]

By equation (21.21),

\[
P(A + B) = \frac{2!}{1!1!} \times p(A)p(B) \quad \text{for} \quad A \neq B
\]

\[
P(A + A) = \frac{2!}{2!1!} \times p(A)^2
\]

Therefore

(i) \(P(8+12) = 2 \times p(8)p(12) = 2 \times \frac{5}{36} \times \frac{1}{36} = \frac{10}{36^2} \)

(ii) \(P(9+11) = 2 \times p(9)p(11) = 2 \times \frac{4}{36} \times \frac{2}{36} = \frac{16}{36^2} \)

(iii) \(P(10+10) = p(10)^2 = \frac{3}{36} \times \frac{3}{36} = \frac{9}{36^2} \)

and

(iv) \(P(20) = \frac{10}{36^2} + \frac{16}{36^2} + \frac{9}{36^2} = \frac{35}{36^2} \approx 0.1620 \)
15. Use the probability distribution of the outcomes of throwing a pair of dice, from Exercise 9, to calculate the probability that three throws of two dice have total outcome 30.

For three throws of two dice, a total outcome 30 is obtained from throws

\[6 + 12 + 12 \quad (\text{one six and two twelves})\]
\[7 + 11 + 12\]
\[8 + 10 + 12, 8 + 11 + 11\]
\[9 + 9 + 12, 9 + 10 + 11\]
\[10 + 10 + 10\]

By equation (21.21),

\[P(A + B + C) = \frac{3!}{1!1!1!} \times p(A)p(B)p(C) \quad \text{for A, B, C all different}\]
\[P(2A + B) = \frac{3!}{2!1!0!} \times p(A)^2p(B) \quad \text{for A and B different}\]
\[P(3A) = \frac{3!}{3!0!0!} \times p(A)^3\]

Therefore, using the probabilities from Exercise 9,

\[P(6 + 12 + 12) = 3 \times p(6)p(12)^2 = 3 \times \frac{1}{36} \times \frac{1}{36} = \frac{15}{36^3}\]
\[P(7 + 11 + 12) = 6 \times p(7)p(11)p(12) = 6 \times \frac{2}{36} \times \frac{1}{36} = \frac{72}{36^3}\]
\[P(8 + 10 + 12) = 6 \times p(8)p(10)p(12) = 6 \times \frac{3}{36} \times \frac{1}{36} = \frac{90}{36^3}\]
\[P(8 + 11 + 11) = 3 \times p(8)p(11)^2 = 3 \times \frac{5}{36} \times \frac{2}{36} = \frac{60}{36^3}\]
\[P(9 + 9 + 12) = 3 \times p(9)^2p(12) = 3 \times \frac{4}{36} \times \frac{1}{36} = \frac{48}{36^3}\]
\[P(9 + 10 + 11) = 6 \times p(9)p(10)p(11) = 6 \times \frac{4}{36} \times \frac{3}{36} = \frac{144}{36^3}\]
\[P(10 + 10 + 10) = p(10)^3 = \frac{3}{36} \times \frac{3}{36} = \frac{27}{36^3}\]

and \[P(30) = \frac{(15 + 72 + 90 + 60 + 48 + 144 + 27)}{36^3} = \frac{456}{36^3} \approx 0.0098\]
Section 21.6

16. List the permutations of 4 different objects.

There are 4! permutations of 4 objects; call them A, B, C, D:

ABCD, ABDC, ACDB, ACBD, ADBC, ADCB,
BACD, BADC, BCDA, BCAD, BDAC, BDCA,
CABD, CADB, CBDA, CBAD, CDAB, CDBA,
DABC, DACB, DBCA, DBAC, DCAB, DCBA

17. List the permutations of 5 different objects taken 2 at a time.

There are \(\frac{5!}{2!} = \frac{5!}{3!} \) such permutations:

AB, AC, AD, AE
BA, BC, BD, BE
CA, CB, CD, CE
DA, DB, DC, DE
EA, EB, EC, ED

18. List the combinations of 5 different objects taken 2 at a time.

There are \(\binom{5}{2} = \frac{5!}{2!3!} \) such combinations:

AB, AC, AD, AE
BC, BD, BE
CD, CE
DE

19. List the distinct permutations of the 5 objects, A, A, A, B, and B.

The 5 objects consist of two group, the A’s and the B’s. The \(\binom{5}{3} = 10 \) distinct permutations are

AAABB, AABAB, AABBA,
ABAAB, ABABA, ABBA,
BAAAB, BAABA, BABAA,
BAAA
20. What is the number of distinct permutations of 8 objects made up of 4 of type A, 3 of B, 1 of C?

By equation (21.24),
\[\frac{8!}{4!3!1!} = \frac{8 \times 7 \times 6 \times 5 \times 4!}{4! \times 3! \times 1!} = 280 \]

21. Given an inexhaustible supply of objects A, B, and C, what is the number of distinct permutations of these taken 8 at a time?

Each of the objects A, B, and C can occur each time; for example

AAAAAAA or ABCABCAB

Each can occur in each of the eight positions, and the total number of permutations is \(3^8 = 6561\)

22. (i) Given 3 distinguishable particles each of which can be in any of 4 states with (different) energies \(E_1, E_2, E_3,\) and \(E_4,\) (a) what is the total number of ways of distributing the particles amongst the states?, (b) how many states of the system have total energy \(E_1 + E_2 + E_4\) ? (ii) Repeat (i) for 3 electrons instead of distinguishable particles.

(i) (a) Each particle can be in any of the 4 states. The number of distributions of distinguishable particles is \(4^3 = 64\).

(b) The number of ways of distributing three distinguishable particles in 3 states is the same as the number of permutations of three different objects: \(3! = 6\).

(ii) (a) For 3 indistinguishable particles and 4 states, three are occupied and one is empty, and the number of distributions is \(\binom{4}{3} = 4\).

(b) There is only one way of distributing three indistinguishable particles in three states.
Section 21.7

23. The variable \(x \) can have any value in the continuous range \(0 \leq x \leq 1 \) with probability density function \(\rho(x) = 6x(1-x) \). (i) Derive an expression for the probability, \(P(x \leq a) \), that the value of \(x \) is not greater than \(a \). (ii) Confirm that \(P(0 \leq x \leq 1) = 1 \). (iii) Find the mean \(\langle x \rangle \) and standard deviation \(\sigma \). (iv) Find the probability that \(\langle x \rangle - \sigma \leq x \leq \langle x \rangle + \sigma \).

By equation (21.33),

\[
P(x_1 \leq x \leq x_2) = \int_{x_1}^{x_2} \rho(x) \, dx = 6 \int_{x_1}^{x_2} (x-x^2) \, dx
\]

\[
= (3x_2^2 - 2x_2^3) - (3x_1^2 - 2x_1^3)
\]

Then

(i) \(P(x \leq a) = \int_0^a \rho(x) \, dx = 3a^2 - 2a^3 \)

(ii) \(P(x \leq 1) = \int_0^1 \rho(x) \, dx = 3 - 2 = 1 \)

(iii) By equation (21.38),

\[
\sigma^2 = \int_{-\infty}^{\infty} (x-\langle x \rangle)^2 \rho(x) \, dx = \langle x^2 \rangle - \langle x \rangle^2
\]

where

\[
\langle x \rangle = \int_0^1 x \rho(x) \, dx = \int_0^1 (x^2 - x^3) \, dx = 6 \left[\frac{1}{3} - \frac{1}{4} \right] = \frac{1}{2}
\]

\[
\langle x^2 \rangle = \int_0^1 x^2 \rho(x) \, dx = \int_0^1 (x^3 - x^4) \, dx = 6 \left[\frac{1}{4} - \frac{1}{5} \right] = \frac{3}{10}
\]

Therefore

\[
\sigma^2 = \frac{3}{10} - \left(\frac{1}{2} \right)^2 = \rightarrow \sigma = \frac{1}{\sqrt{20}}
\]

(iv) \(P(\langle x \rangle - \sigma \leq x \leq \langle x \rangle + \sigma) = \int_{\langle x \rangle - \sigma}^{\langle x \rangle + \sigma} \rho(x) \, dx \)

\[
= \left[3(\langle x \rangle + \sigma)^2 - 2(\langle x \rangle + \sigma)^3 \right] - \left[3(\langle x \rangle - \sigma)^2 - 2(\langle x \rangle - \sigma)^3 \right]
\]

\[
= 12\sigma(\langle x \rangle) - 12\langle x \rangle^2 \sigma - 4\sigma^3 = \frac{7}{5\sqrt{5}} \approx 0.6261
\]
24. The variable \(r \) can have any value in the range \(r = 0 \rightarrow \infty \) with probability density function \(\rho(r) = 4r^2e^{-2r} \). Derive an expression for the probability \(P(0 \leq r \leq R) \) that the variable has value not greater than \(R \).

\[
P(0 \leq r \leq R) = \int_0^R \rho(r) \, dr = \int_0^R 4r^2e^{-2r} \, dr
\]

(by parts)

\[
= \left[-2r^2e^{-2r} \right]_0^R + \left[-re^{-2r} \right]_0^R + \left[-e^{-2r} \right]_0^R
\]

\[
= 1 - e^{-2R} \left[1 + 2R + 2R^2 \right]
\]

25. Confirm that \(\rho(r) \) in Exercise 24 is the radial density function (in atomic units) of the 1s orbital of the hydrogen atom. Find (i) the mean value \(\langle r \rangle \), (ii) the standard deviation \(\sigma \), (iii) the most probable value of \(r \).

The radial wave function of the hydrogen 1s-orbital is \(R_{1,0}(r) = 2r^{-\frac{3}{2}} \) (Table 14.2 with \(Z = 1 \)). The corresponding radial density is

\[
\rho(r) = r^2R_{1,0}^2(r) = 4r^2e^{-2r} \quad \text{(Example 21.14)}
\]

We use the standard integral \(\int_0^\infty r^n e^{-ar} \, dr = \frac{n!}{a^{n+1}} \). Then

(i) \(\langle r \rangle = \int_0^\infty rp(r) \, dr = 4\int_0^\infty r^3e^{-2r} \, dr = 4 \times \frac{3!}{2^4} = \frac{3}{2} \)

(ii) We have \(\langle r^2 \rangle = \int_0^\infty r^2p(r) \, dr = 4\int_0^\infty r^4e^{-2r} \, dr = 4 \times \frac{4!}{2^5} = 3 \)

Therefore \(\sigma^2 = \langle r^2 \rangle - \langle r \rangle^2 = 3 - \frac{9}{4} = \frac{3}{4} \quad \rightarrow \quad \sigma = \sqrt{\frac{3}{2}} \)

(iii) For the most probable value of \(r \),

\[
\frac{dp}{dr} = 8r(1-r)e^{-2r} = 0 \quad \text{when} \quad r = 1
\]
Section 21.10

26. (i) Find the linear straight-line fit for the following data points. (ii) If the errors in y are all equal to $\sigma = 1$, find estimates of the errors in the slope and intercept of the line.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>4.4</td>
<td>4.9</td>
<td>6.4</td>
<td>7.3</td>
<td>8.8</td>
<td>10.3</td>
<td>11.7</td>
<td>13.2</td>
<td>14.8</td>
<td>15.3</td>
<td>16.5</td>
<td>17.2</td>
</tr>
</tbody>
</table>

(i) By equations (21.54), the slope m and intercept c of the straight-line $y = mx + c$ are

$$m = \frac{\sum xy - \bar{x} \sum y}{\sum x^2 - \bar{x}^2}, \quad c = \bar{y} - m \bar{x}$$

The results of the (spreadsheet) computation are summarized in Table 4.

<table>
<thead>
<tr>
<th>Table 4</th>
<th>x_i</th>
<th>y_i</th>
<th>x_i^2</th>
<th>$x_i y_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.4</td>
<td>1</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.9</td>
<td>4</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.4</td>
<td>9</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7.3</td>
<td>16</td>
<td>29.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8.8</td>
<td>25</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10.3</td>
<td>36</td>
<td>61.8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11.7</td>
<td>49</td>
<td>81.9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13.2</td>
<td>64</td>
<td>105.6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14.8</td>
<td>81</td>
<td>133.2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15.3</td>
<td>100</td>
<td>153.0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>16.5</td>
<td>121</td>
<td>181.5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>17.2</td>
<td>144</td>
<td>206.4</td>
<td></td>
</tr>
</tbody>
</table>

Mean values $\frac{1}{12} \sum x_i = 6.5$, $\bar{y} = 10.9$, $\sum x_i^2 = 54.17$, $\bar{y} = 85.83$.

Then $m = 1.26$, $c = 2.73$, and $y = 1.26x + 2.73$

(ii) By equation (21.55), estimates of the error in the slope and intercept are, for $\sigma = 1$,

$$\sigma_m^2 = \frac{1}{12 \left(\sum x_i^2 - \bar{x}^2 \right)} = 0.007 \quad \Rightarrow \quad \sigma_m \approx 0.08$$

$$\sigma_c^2 = \frac{\bar{y}^2}{12 \left(\sum x_i^2 - \bar{x}^2 \right)} = 0.38 \quad \Rightarrow \quad \sigma_c \approx 0.62$$

and $y = mx + c$ where $y = 1.26 \pm 0.08$, $c = 2.73 \pm 0.62$
The results of measurements of the rate constant of the second-order decomposition of an organic compound over a range of temperatures are:

<table>
<thead>
<tr>
<th>T/K</th>
<th>282.3</th>
<th>291.4</th>
<th>304.1</th>
<th>313.6</th>
<th>320.2</th>
<th>331.3</th>
<th>343.8</th>
<th>354.9</th>
<th>363.8</th>
<th>371.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>k/10^{-3} dm^3 mol^{-1} s^{-1}</td>
<td>0.0249</td>
<td>0.0691</td>
<td>0.319</td>
<td>1.95</td>
<td>5.98</td>
<td>19.4</td>
<td>57.8</td>
<td>114.</td>
<td>212.</td>
<td></td>
</tr>
</tbody>
</table>

The temperature dependence of the rate constant is given by the Arrhenius equation \(k = A e^{-E_a/RT} \), or \(\ln k = -E_a/RT + \ln A \), in which the activation energy \(E_a \) and pre-exponential factor \(A \) may be assumed to be constant over the experimental range of temperature. A plot of \(\ln k \) against \(1/T \) should therefore be a straight line. (i) Construct a table of values of \(1/T \) and \(\ln k \), and determine the linear least-squares fit to the data assuming only \(k \) is in error. (ii) Calculate the best values of \(E_a \) and \(A \).

(i) The results of the (spreadsheet) computation is summarized in Table 5, with values of \(1/T \) and \(\ln k \) listed as the dimensionless quantities \(x = K/T \) and \(y = \ln \left[\frac{k}{dm^3 mol^{-1} s^{-1}} \right] \), respectively.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>(x_i)</th>
<th>(y_i)</th>
<th>(x_i^2)</th>
<th>(x_i y_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0035423</td>
<td>-10.600643</td>
<td>0.000013</td>
<td>-0.037551</td>
<td></td>
</tr>
<tr>
<td>0.0034317</td>
<td>-9.5799558</td>
<td>0.000012</td>
<td>-0.032876</td>
<td></td>
</tr>
<tr>
<td>0.0032884</td>
<td>-8.0503195</td>
<td>0.000011</td>
<td>-0.026473</td>
<td></td>
</tr>
<tr>
<td>0.0031888</td>
<td>-6.9900505</td>
<td>0.000010</td>
<td>-0.022920</td>
<td></td>
</tr>
<tr>
<td>0.0031230</td>
<td>-6.2399259</td>
<td>0.000010</td>
<td>-0.019488</td>
<td></td>
</tr>
<tr>
<td>0.0030184</td>
<td>-5.1193347</td>
<td>0.000009</td>
<td>-0.015452</td>
<td></td>
</tr>
<tr>
<td>0.0029087</td>
<td>-3.9424822</td>
<td>0.000008</td>
<td>-0.011467</td>
<td></td>
</tr>
<tr>
<td>0.0028177</td>
<td>-2.8507665</td>
<td>0.000008</td>
<td>-0.008033</td>
<td></td>
</tr>
<tr>
<td>0.0027488</td>
<td>-2.1715568</td>
<td>0.000008</td>
<td>-0.005969</td>
<td></td>
</tr>
<tr>
<td>0.0026903</td>
<td>-1.5511690</td>
<td>0.000007</td>
<td>-0.004173</td>
<td></td>
</tr>
</tbody>
</table>

\[
\sum_{i=1}^{10} \frac{1}{10} = \bar{x} = 0.003076 \quad \bar{y} = -5.70962 \quad \bar{x}^2 = 9.54 \times 10^{-6} \quad \bar{y}^2 = -0.01838
\]

By equations (21.54), the slope \(m \) and intercept \(c \) of the straight-line fit \(y = mx + c \) are

\[
m = -1.076 \times 10^4 \quad \text{and} \quad c = 27.38.
\]

Then \(y = -1.076 \times 10^4 x + 27.38 \), and

\[
\ln \left[k/\text{dm}^3 \text{mol}^{-1} \text{s}^{-1} \right] = -1.076 \times 10^4 \times \frac{K}{T} + 27.38
\]

(ii) We have \(\ln k = -E_a/RT + \ln A \) (with \(k \) and \(A \) in the same units of \(\text{dm}^3 \text{mol}^{-1} \text{s}^{-1} \)). Therefore

\[
E_a/R = 1.076 \times 10^4 \text{ K} \quad \Rightarrow \quad E_a = (1.076 \times 10^4) \times (8.315 \text{ J mol}^{-1}) = 89.5 \text{ kJ mol}^{-1}
\]

Also \(\ln \left[A/\text{dm}^3 \text{mol}^{-1} \text{s}^{-1} \right] = 27.38 \quad \rightarrow \quad A = e^{27.38 \text{ dm}^3 \text{mol}^{-1} \text{s}^{-1}} = 7.8 \times 10^4 \text{ dm}^3 \text{mol}^{-1} \text{s}^{-1} \)
(iii) By equations (21.55), with $\sigma = 0.1$,

\[
\begin{align*}
\sigma_m &= 115 \quad \rightarrow \quad \Delta E_a = 115 \times 8.315 \text{ J mol}^{-1} \approx 1 \text{ kJ mol}^{-1} \\
\rightarrow E_a &= 89.5 \pm 1 \text{ kJ mol}^{-1} \\
\sigma_c &= 0.355 \quad \rightarrow \quad A = e^{7.38 \pm 0.36} \\
\rightarrow \quad 5 \times 10^{11} < A < 11 \times 10^{11}
\end{align*}
\]