P6.1 Summary questions

1 a protons, electrons, neutrons
 b proton, neutron, electron
 c charge, protons, electrons
 d isotopes

2 a i D
 ii B
 iii A
 iv C

<table>
<thead>
<tr>
<th>Type of decay</th>
<th>Change of mass of nucleus?</th>
<th>Change of charge on nucleus?</th>
<th>Different element produced?</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>beta</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>gamma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neutron</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

3 a least
 b most
 c ionising
 d ionising
 e aluminium

4 a Random means that an event is equally likely in any time interval.
 b \[^{219}_{86}\text{Rn} \rightarrow ^4_2\text{He} + ^{215}_{86}\text{Po}\]
 c \[^{131}_{53}\text{Rn} \rightarrow ^0_0\text{e} + ^{131}_{54}\text{Xe}\]

5 a Electrons from higher levels fall down to lower energy levels and emit a photon of light. Different transitions produce photons of different energy, and so of a different frequency.
 b An electron moves up from one energy level to another.

6 The frequency/energy of the electromagnetic radiation emitted by nuclei is higher than that of the frequency/energy of the electromagnetic radiation emitted by atoms because the energy of levels in nuclei are higher.

7 a alpha decay
 The atomic mass decreases by 4.
 b Half-life is the time it takes half the atoms to decay, or the time for the activity to halve.

8 a Half-life = 1.5 hours (reading 80 Bq – 40 Bq)
 ii After 7 half-lives you have \[\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{128}\] of the original, so the net decline is \[\frac{1}{128}\]
 iii After 7 half-lives you have \[\frac{1}{128}\] of the original
 \[\frac{1}{128} \times 24.00 \text{ g} = 0.19 \text{ g (2 sig fig)}\]
 So you have 24.00 g – 0.19 g = 23.81 g
 iv The element that the material decays into is not itself radioactive.