B1 Summary questions

<table>
<thead>
<tr>
<th>Question number</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 1 | Without microscopes we cannot see most cells.
Light microscopes
show cellular structure of living organisms and some subcellular structures (e.g., nucleus and chloroplasts)
allow observation of living cells and staining of cells to show different features
Electron microscopes
enable examination of cells in great detail
help determine what goes on within individual body cells
can only be used for dead specimens in a vacuum | 1 | 1 | 1 | 1 |
| 2 a | A: genetic material
B: cytoplasm
C: cell membrane
D: cell wall
E: plasmids
F: flagella | 1 | 1 | 1 | 1 | 1 |
| 2 b | Labelled diagram of an animal or plant cell.
size range 10–100 µm | 5 | Diagram should include at least four labelled features. |
| 2 c | **Similarities**
• cell walls
• cell membrane
• cytoplasm
differences
Any three from:
• bacteria cells much smaller than plant cells
• chloroplasts present in some plant cells
• permanent vacuoles present in plant cells | 6 | Maximum 3 marks for similarities. Maximum 3 marks for differences.
Credit any other sensible answers. |
B1 Summary questions

- **slime capsules present in some bacteria cells**
- **flagella present in some bacteria cells**
- **genetic material contained in chromosomes in a nucleus in plant cell, single DNA loop found free in the cytoplasm with additional small loops of DNA known as plasmids in bacterial cell**

2 d. **bacteria are 1–2 orders of magnitude smaller than eukaryotic cells**
contain free genetic material
can reproduce
mitochondria and chloroplasts are similar in size to bacteria
contain genetic material so they can reproduce independently of the cell dividing

3 a. **similarities**
Any one from:
- random movement of particles
- takes place down concentration gradient
- no energy from respiration involved
differences
Any one from:
- only water moves in osmosis
- movement is across partially permeable membrane in osmosis

3 b. **similarities**
both are mechanisms for moving substances in and out of cells
differences
only specific substances are moved by active transport
active transport takes place against concentration gradient
active transport uses energy from cellular respiration

3 c. Water will move into both A and B by osmosis
as inside of bag is hypertonic to outside.
Water will move into bag B faster than into bag A due to higher temperature.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased temperature gives increased rate of random particle movement.</td>
<td>1</td>
</tr>
<tr>
<td>Increasing the rate at which water particles would pass through the partially permeable membrane and speeding up osmosis.</td>
<td>1</td>
</tr>
<tr>
<td>3 d i useful model though effects of active transport are not demonstrated</td>
<td>1</td>
</tr>
<tr>
<td>3 d ii shows what happens inside the cell but does not model effect of cell wall (very important in osmotic events in plant cells)</td>
<td>1</td>
</tr>
<tr>
<td>4 a Amoeba is single-celled organism with large surface area to volume ratio.</td>
<td>1</td>
</tr>
<tr>
<td>It is able to get sufficient oxygen through diffusion across the cell membrane.</td>
<td>1</td>
</tr>
<tr>
<td>Stickleback is larger, more complex multicellular organism with lower surface area to volume ratio.</td>
<td>1</td>
</tr>
<tr>
<td>Diffusion cannot provide sufficient oxygen for each cell, so a more effective exchange system (gills) is required.</td>
<td>1</td>
</tr>
<tr>
<td>4 b Thin filament structure of gills greatly increases surface area available for exchanging gases.</td>
<td>1</td>
</tr>
<tr>
<td>Pushing water across gills increases rate of oxygen absorption by maintaining steep concentration gradient between water and blood.</td>
<td>1</td>
</tr>
<tr>
<td>Circulating blood delivers oxygen to cells.</td>
<td>1</td>
</tr>
<tr>
<td>Removes metabolic waste.</td>
<td>1</td>
</tr>
<tr>
<td>Maintaining steep concentration gradient at exchange surfaces in gills to increase diffusion further.</td>
<td>1</td>
</tr>
<tr>
<td>5 a Any two from:</td>
<td>2</td>
</tr>
<tr>
<td>• large surface area</td>
<td></td>
</tr>
<tr>
<td>• thin membrane/being thin</td>
<td></td>
</tr>
<tr>
<td>• efficient blood supply</td>
<td></td>
</tr>
<tr>
<td>• being ventilated</td>
<td></td>
</tr>
</tbody>
</table>
5 b | Large surface area provides greater area over which exchange can take place (e.g., villi in small intestine, alveoli in lungs, plant root hair cells).
 | Thin membrane/being thin provides short diffusion path/increased efficiency (e.g., thin leaves, stomata, proximity of alveolar air and blood in lungs, proximity of inside of gut and blood vessels in villi in small intestine).
 | Efficient blood supply maintains steep concentration gradient (e.g., alveoli, gills).
 | Being ventilated maintains steep concentration gradient (e.g., breathing, moving water over gills).

6 | Explanation must match adaptations given in 5 b.
 | 3 marks for each adaptation.