<table>
<thead>
<tr>
<th>Question number</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 1 | conc HNO₃
cconc H₂SO₄
HNO₃ + 2H₂SO₄ → NO₂⁻ + H₃O⁺ + 2HSO₄⁻
or HNO₃ + H₂SO₄ → NO₂⁻ + H₂O + HSO₄⁻
or HNO₃ + H⁺ → NO₂⁻ + H₂O
Electrophilic substitution | 1 | If both ‘conc’ missing you can score one for both acids.
This can also be done in two equations.
Benzene can also be written as C₆H₆ and nitrobenzene as C₆H₅NO₂.
One mark is for the arrow from within hexagon to N or to the + on N (M1).
The ‘horseshoe’ must not extend beyond C₂ to C₆.
Mark 3 is for the arrow into the hexagon (M3). |
| 2 | CH₃COCl + AlCl₃ → CH₃⁺CO + AlCl₄⁻
Electrophilic substitution | 2 | One mark is for the correct reactive species and one for the equation.
This cannot be F/C acylation.
Horseshoe must not extend beyond C₂ to C₆.
The + must be on the C of RC⁺O. |
| 3 | CH₃COCl + AlCl₃ → CH₃⁺CO + AlCl₄⁻
Electrophilic substitution | 2 | There is no mark for the acylium ion here. The mark is for the aluminium chloride and the second mark is for the balanced equation.
You could have FeCl₃.
The position of + on electrophile can be on O or C.
The M1 arrow from within hexagon to C or to + on C.
The + must be on C of RCO. |
| | | 1 | This is not F/C acylation. |
Practice questions

4 (a)
\[CH_3CO^+ \]

1 point

4 (b)

<table>
<thead>
<tr>
<th>Chemical Reaction</th>
<th>Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CH_3CH_2COCl + AlCl_3 \rightarrow CH_3CH_2CO+ + AlCl_4^-]</td>
<td>Horseshoe must not extend beyond C2 to C6. The + must be on the C of RC=O.</td>
</tr>
</tbody>
</table>

3 points

5 (a)

<table>
<thead>
<tr>
<th>Chemical Reaction</th>
<th>Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_3CH_2COCl OR CH_3CH_2CClO OR propanoyl chloride OR (CH_3CH_2CO)_2O OR propanoic anhydride</td>
<td>could score in equation</td>
</tr>
</tbody>
</table>

1 point

<table>
<thead>
<tr>
<th>Chemical Reaction</th>
<th>Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlCl_3 or FeCl_3 or names</td>
<td>could score in equation</td>
</tr>
</tbody>
</table>

1 point

<table>
<thead>
<tr>
<th>Chemical Reaction</th>
<th>Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_3CH_2COCl + AlCl_3 \rightarrow CH_3CH_2CO+ + AlCl_4^-</td>
<td>allow + on C or O in equation</td>
</tr>
</tbody>
</table>

1 point

5 (b)

<table>
<thead>
<tr>
<th>Chemical Reaction</th>
<th>Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 arrow from circle or within it to C or to + on C</td>
<td>M1 arrow from circle or within it to C or to + on C</td>
</tr>
</tbody>
</table>

3 points

Horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure Ignore base removing H in M3

5 (c)

<table>
<thead>
<tr>
<th>Chemical Reaction</th>
<th>Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tollens or ammoniacal silver nitrate</td>
<td>penalise wrong formula</td>
</tr>
</tbody>
</table>

1 point

1 point

6 (a)

Benzene is more stable than cyclohexatriene

1 point

<table>
<thead>
<tr>
<th>Chemical Reaction</th>
<th>Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected (\Delta H^\circ_{\text{hydrogenation}}) of C_6H_6 is (3(\sim 120) = -360 \text{ kJ mol}^{-1})</td>
<td>more stable than cyclohexatriene must be stated or implied</td>
</tr>
</tbody>
</table>

1 point

<table>
<thead>
<tr>
<th>Chemical Reaction</th>
<th>Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual (\Delta H^\circ_{\text{hydrogenation}}) of benzene is 152 kJ mol(^{-1}) (less exothermic) or 152 kJ mol(^{-1}) different from expected</td>
<td>If benzene more stable than cyclohexene, then penalise M1 but mark on</td>
</tr>
</tbody>
</table>

1 point

<table>
<thead>
<tr>
<th>Chemical Reaction</th>
<th>Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Because of delocalisation or electrons spread out or resonance</td>
<td>If benzene less stable: can score M2 only</td>
</tr>
</tbody>
</table>

1 point

<table>
<thead>
<tr>
<th>Chemical Reaction</th>
<th>Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow in words e.g. expected (\Delta H^\circ_{\text{hydrogenation}}) is three times the (\Delta H^\circ_{\text{hydrogenation}}) of cyclohexene</td>
<td>Ignore energy needed</td>
</tr>
</tbody>
</table>

1 point
6 (b)

Conc HNO₃

Conc H₂SO₄

2 H₂SO₄ + HNO₃ → 2 HSO₄⁻ + NO₂⁺ + H₂O

OR H₂SO₄ + HNO₃ → HSO₄⁻ + NO₂⁺ + H₂O

OR via two equations

H₂SO₄ + HNO₃ → HSO₄⁻ + H₂NO₃⁺

H₂NO₃⁺ → NO₂⁺ + H₂O

Diagram:

- M₁ arrow from within hexagon to N or + on N
- Allow NO₂⁺ in mechanism
- Horseshoe must not extend beyond C₂ to C₆ but can be smaller
- + not too close to C₁
- M₃ arrow into hexagon unless Kekule
- Allow M₃ arrow independent of M₂ structure ignore base removing H in M₃
- + on H in intermediate loses M₂ not M₃

Marking:

- 1 mark: If either or both conc missing, allow one; this one mark can be gained in equation
- 1 mark: Allow + anywhere on NO₂⁺
- 3 marks: M₁ arrow from within hexagon to N or + on N

7

[CH₃CH₂CO]⁺

CH₃CH₂COCl + AlCl₃ → [CH₃CH₂CO]⁺ + AlCl₄⁻

Diagram:

- M₁ arrow into hexagon unless Kekule
- Allow M₁ arrow into hexagon unless Kekule
- The horseshoe should extend from C₂ to C₆ only

Marking:

- 1 mark: You can gain the electrophile mark from the equation if not stated separately. Therefore the correct balanced equation is worth 2 marks.
- 1 mark: In the equation, the position of the + can be on O or C or outside square brackets, however you do not need to show the square brackets.
- 3 marks: The arrow for M₁ must be to C or to the + on C.

8

Cyclohexane evolves 120 kJ mol⁻¹

Therefore expect triene to evolve 360 kJ mol⁻¹; or 3 × 120 = 360 kJ mol⁻¹

360 – 208 = 152 kJ;

Benzene lower in energy / more stable; due to delocalisation;

Marking:

- 4 marks: Cannot estimate 150 kJ, you must use the values in the question. Therefore 152 kJ can score first 2 marks in this part.
- Any mention of ‘bond breaking needing energy’ will not score marks.

9 (a)

- nitric acid and sulfuric acid

9 (b)

- explosives / dyes / fibres / pharmaceuticals

9 (c) (i)

- C₆H₆ + HNO₃ → C₆H₅NO₂ + H₂

9 (c) (ii)

- it accepts a pair of electrons

9 (c) (iii)

- electrophilic substitution