<table>
<thead>
<tr>
<th>Chapter 1: Applied anatomy and physiology</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 The structure and functions of the skeleton</td>
<td>6</td>
</tr>
<tr>
<td>1.2 The structure and function of the muscular system</td>
<td>12</td>
</tr>
<tr>
<td>1.3 The structure and function of the cardio-respiratory system</td>
<td>15</td>
</tr>
<tr>
<td>1.4 Aerobic and anaerobic exercise</td>
<td>24</td>
</tr>
<tr>
<td>1.5 The effects of exercise</td>
<td>27</td>
</tr>
<tr>
<td>Exam-style questions</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2: Movement analysis</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Types of levers</td>
<td>32</td>
</tr>
<tr>
<td>2.2 Basic movements</td>
<td>36</td>
</tr>
<tr>
<td>2.3 Planes of movement and axes of rotation</td>
<td>40</td>
</tr>
<tr>
<td>Exam-style questions</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3: Physical training</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Health and fitness</td>
<td>44</td>
</tr>
<tr>
<td>3.2 The components of fitness</td>
<td>45</td>
</tr>
<tr>
<td>3.3 Fitness testing</td>
<td>52</td>
</tr>
<tr>
<td>3.4 Measuring agility: The Illinois Agility Test</td>
<td>55</td>
</tr>
<tr>
<td>3.5 Measuring balance: The Stork Stand Test</td>
<td>56</td>
</tr>
<tr>
<td>3.6 Measuring cardiovascular endurance: The Multi Stage Fitness Test</td>
<td>57</td>
</tr>
<tr>
<td>3.7 Measuring coordination: The Wall Toss Test</td>
<td>58</td>
</tr>
<tr>
<td>3.8 Measuring flexibility: The Sit and Reach Test</td>
<td>59</td>
</tr>
<tr>
<td>3.9 Measuring muscular endurance: The Sit-Up Bleep Test</td>
<td>60</td>
</tr>
<tr>
<td>3.10 Measuring power and explosive strength: The Vertical Jump Test</td>
<td>61</td>
</tr>
<tr>
<td>3.11 Measuring Reaction Time: The Ruler Drop Test</td>
<td>62</td>
</tr>
<tr>
<td>3.12 Measuring Maximal Strength: The One Rep Max Test</td>
<td>63</td>
</tr>
<tr>
<td>3.13 Measuring speed: The 30 Metre Sprint Test</td>
<td>64</td>
</tr>
<tr>
<td>3.14 Measuring strength: The Handgrip Dynamometer Test</td>
<td>65</td>
</tr>
<tr>
<td>3.15 The principles of training</td>
<td>66</td>
</tr>
<tr>
<td>3.16 Training thresholds</td>
<td>68</td>
</tr>
<tr>
<td>3.17 Types of training</td>
<td>70</td>
</tr>
<tr>
<td>3.18 Preventing injury</td>
<td>78</td>
</tr>
<tr>
<td>3.19 Training seasons</td>
<td>79</td>
</tr>
<tr>
<td>3.20 Warming up and cooling down</td>
<td>80</td>
</tr>
<tr>
<td>Exam-style questions</td>
<td>82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4: Sports psychology</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Skill and ability</td>
<td>84</td>
</tr>
<tr>
<td>4.2 Goals and targets</td>
<td>88</td>
</tr>
<tr>
<td>4.3 Information processing</td>
<td>90</td>
</tr>
<tr>
<td>4.4 Guidance and feedback on performance</td>
<td>92</td>
</tr>
<tr>
<td>4.5 Arousal</td>
<td>93</td>
</tr>
<tr>
<td>4.6 Aggression</td>
<td>101</td>
</tr>
<tr>
<td>4.7 Personality types</td>
<td>102</td>
</tr>
<tr>
<td>4.8 Motivation</td>
<td>103</td>
</tr>
<tr>
<td>Exam-style questions</td>
<td>104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5: Socio-cultural influences</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Social groups and factors affecting participation</td>
<td>106</td>
</tr>
<tr>
<td>5.2 The commercialisation of physical activity and sport</td>
<td>107</td>
</tr>
<tr>
<td>5.3 The impact of technology on physical activity and sport</td>
<td>122</td>
</tr>
<tr>
<td>5.4 Ethical conduct by performers</td>
<td>124</td>
</tr>
<tr>
<td>5.5 Spectator behaviour</td>
<td>130</td>
</tr>
<tr>
<td>Exam-style questions</td>
<td>132</td>
</tr>
</tbody>
</table>
Joint action and movements

Different joints allow different types of movement. For example:

- The hinge joints at the knee and elbow can only move in one direction, enabling **flexion** and **extension**.
- The hinge joint at the ankle enables **plantar flexion** and **dorsiflexion**.
- The ball and socket joints at the hip and shoulder enable **rotation**, **adduction**, **abduction**, as well as flexion and extension. The ball and socket joints at the shoulder also enable **circumduction**.

Exam tip

The types of movement that happen at the synovial joints are covered in more detail in Chapter 2, on pages 36–9, but it is important that you see the link between the skeleton, joints and the movements they enable.

Key terms

- **Extension**: increase in the angle of bones at a joint.
- **Flexion**: decrease in the angle of bones at a joint.
- **Abduction**: movement of a bone or limb away from the midline of the body.
- **Adduction**: movement of a bone or limb towards the midline of the body.
- **Circumduction**: movement of a bone or limb in a circular pattern; a combination of flexion, extension, adduction and abduction.
- **Rotation**: a circular movement around a joint or, in other words, a movement around an axis.
- **Plantar flexion**: movement at the ankle joint that points the toes and increases the angle at the ankle joint.
- **Dorsiflexion**: movement at the ankle joint that flexes the foot upwards and decreases the angle at the ankle joint.

▲ **Figure 1.6** Running involves flexion and extension at the knee joints, hip joints and elbow joints, and plantar flexion and dorsiflexion at the ankle joints

▲ **Figure 1.7** Bowling overarm in cricket involves rotation at the shoulder joint
Exam tip

This topic is closely linked to the practical component of the qualification. You need to be aware of the specific movements required in your chosen physical activities.

Activity

1. **Identify exactly which joints are allowing the movement to take place.**
2. **For each joint, identify what type of joint it is.** Is it a ball and socket joint or a hinge joint?
3. **For each joint, identify what type of movement takes place.** Is it flexion, extension, adduction, abduction, rotation, circumduction, plantar flexion or dorsiflexion?

Figure 1.8 The breaststroke involves adduction and abduction at the shoulder joint.

Figure 1.9 The arm action in butterfly involves circumduction at the shoulder joint.
The short-term effects of exercise

The short-term effects of exercise occur any time up to 36 hours after you finish exercising.

Key term

Fatigue: physical fatigue is a feeling of extreme or severe tiredness due to a build-up of lactic acid in the muscles or working for a long period of time.

The short-term effects of exercise

You will feel tired, possibly very fatigued.
You may feel light-headed.
You may experience muscle cramps.
Your muscles will ache a little.
You may experience DOMS if your exercise was of high intensity.
You may feel nauseous.

Some of the negative short-term effects of exercise – such as feeling very fatigued, light-headed and nauseous – are quite common until you establish a regular exercise routine, when they are likely to reduce or disappear altogether. Applying the principles of training to your exercise programme will help you avoid the negative effects of exercising.

Exam tip

For more about the principles of training, see pages 66–7.
Basic movements

Our limbs can move in different directions, depending on the types of joints that are present. There are eight basic movement patterns.

Flexion

Flexion takes place when the angle of the bones at the joint decreases. It can occur at the shoulder, elbow, hip and knee.

Figure 2.11 The flexion at the knee gets the foot in the correct position to kick the ball

Extension

Extension takes place when the angle of the bones at the joint increases. It can occur at the shoulder, elbow, hip and knee.

Figure 2.12 When full extension at the knee occurs the foot is in the correct position to make contact with the ball

Exam tip

Pages 10–13 explain the role of the musculo-skeletal system in these basic movement patterns. You need to have knowledge of both aspects – the role of the musculoskeletal system and basic movement patterns – to be able to carry out movement analysis effectively.

Exam tip

If you are asked to ‘flex your muscles’, you would normally bend your arm at the elbow and display your contracted bicep muscle, performing the movement of flexion!
Abduction

Abduction is the movement of a limb away from the midline of the body. It can occur at the shoulders and the hips.

Figure 2.13 When performing a star jump, the outward movement of the arms and legs is abduction and the return movement is adduction.

Adduction

Adduction is the opposite movement to abduction. It takes place when the limb moves towards the midline of the body. It can occur at the hips and shoulders.

Circumduction

Circumduction is a combination of flexion, extension, adduction and abduction. It can occur at the shoulder joint, as the arm moves in a circle.

When performing the butterfly stroke, a swimmer’s arms circumduct at the shoulder joint.

Exam tip

If someone is *abducted* then they are taken away; it’s a simple way to remember what *abduction* is!

If you *add* something, you bring it back or in, so it is *adduction*!
Dorsiflexion

Dorsiflexion takes place at the ankle joint when the foot flexes upwards.

Figure 2.14 When you perform a squat, dorsiflexion takes place at the ankles

Plantar flexion

Plantar flexion takes place at the ankle joint when the foot flexes downwards.

Figure 2.15 When a basketball player jumps, plantar flexion takes place at the ankle
Rotation

Rotation is a circular movement where part of the body turns while the rest remains still. It can occur at the hips and shoulders.

Figure 2.16 When overarm bowling, a cricketer’s arm rotates at the shoulder joint

Exam tip

The blades of a helicopter are called rotors because they go round and round; because rotation takes place.

Key terms

Extension: increase in the angle of bones at a joint.
Flexion: decrease in the angle of bones at a joint.
Abduction: movement of a bone or limb away from the midline of the body.
Adduction: movement of a bone or limb towards the midline of the body.
Circumduction: movement of a bone or limb in a circular pattern; a combination of flexion, extension, adduction and abduction.
Plantar flexion: movement at the ankle joint that points the toes and increases the angle at the ankle joint.
Dorsiflexion: movement at the ankle joint that flexes the foot upwards and decreases the angle at the ankle joint.
Rotation: a circular movement around a joint or, in other words, a movement around an axis.

Activity

2 Observe a practical session and carry out some basic movement analysis by identifying examples of extension, flexion, abduction, adduction, rotation, circumduction, plantar flexion and dorsiflexion. If you are able to, recording the action using a video analysis app, a camera or your phone and playing it back will make this task slightly easier.

3 Look at these photographs and use your knowledge of basic movements and levers to describe:

a) what is happening at the elbow and shoulder joints.

b) what is happening at the hip, knee and ankle joints.

Figure 2.17

Figure 2.18
When carrying out fitness testing it is important to recognise that fitness testing has its limitations.

- The tests are often general and not sport specific. For example, the Sit and Reach Test measures the flexibility of the hamstring group and lower back, but if you are, say, a swimmer, flexibility in your upper body is also important.

- The tests do not replicate the movements used in most sports and physical activities. For example, the Stork Stand Test is used to measure balance but involves a pose that does not feature in many sports that require good balance.

- The tests are usually conducted in isolation, with few distractions, and do not replicate competitive conditions. In contrast, the weather, a noisy crowd or anxiety might affect your ability to perform at your best in a competitive environment.

- Many do not use direct measuring/sub-maximal testing and are, therefore, inaccurate. For example, the Vertical Jump Test requires maximum force in order to drive upwards from the ground when taking off in the jump phase and it can be difficult to ensure that the performer is putting in maximum effort at all times.

- Some of the tests need quite high levels of motivation and can produce unreliable results if the person being tested isn’t fully committed. For example, the Multi Stage Fitness Test requires you to work until you are exhausted, but some people might find the test boring and give up before they reach this point.

- Some tests have questionable reliability because they do not consistently give the same result when they are repeated over and over again. For example, your muscles become progressively fatigued as you complete the One Rep Max test so the result may not reflect your true one rep max.

- A fitness test must be carried out using the correct procedure to ensure it is valid; to ensure it measures exactly what it sets out to measure.
3.5 Measuring balance: The Stork Stand Test

Objective
To measure a person’s ability to maintain a state of balance on one leg.

Equipment required
- A stopwatch
- An assistant

Method
1. Start by standing on both feet with your hands on your hips.
2. Lift one leg and place the toes of your raised foot against the knee of your standing leg.
3. Raise the heel of your standing leg so that you are standing on your tiptoes.
4. Balance for as long as possible without letting either the heel touch the ground or the other foot move away from the knee.
5. Your assistant should measure and record the total time in seconds that the balance is maintained.
6. Compare the results with the national averages.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>> 50 seconds</td>
<td>> 30 seconds</td>
</tr>
<tr>
<td>Above average</td>
<td>41–50 seconds</td>
<td>23–30 seconds</td>
</tr>
<tr>
<td>Average</td>
<td>31–40 seconds</td>
<td>16–22 seconds</td>
</tr>
<tr>
<td>Below average</td>
<td>20–30 seconds</td>
<td>10–15 seconds</td>
</tr>
<tr>
<td>Poor</td>
<td>< 20 seconds</td>
<td>< 10 seconds</td>
</tr>
</tbody>
</table>

Figure 3.13 The stork stand pose should be held for as long as possible.

National averages for 16- to 19-year-olds for the Stork Stand Test
There are a number of factors to take into account when setting up a circuit:

- The space available dictates how big or complex the circuit can be.
- The equipment available also dictates what can be set up at each station.
- The number of stations can vary. Commonly, a circuit will contain six to ten, or sometimes, 12 stations.
- A circuit should contain a variety of exercises chosen to train the required component(s) of fitness. To avoid muscle fatigue, it is important to ensure that exercises that train the same muscle group, such as sit-ups and leg raises, are not placed one after the other.
- It is essential that the exercise at each station is performed using the correct technique, to ensure that the performer receives the maximum benefit from the training session.
- The work:recovery ratio must meet the needs of the performers. Performers must have adequate time to recover in order to perform effectively at the next station, but they must not rest for too long or they will not experience overload.

How the circuit is organised affects which component of fitness is trained:

| Timed circuits – where the performer completes as many repetitions of an exercise as possible in a set time – will improve muscular endurance. | Fixed load circuits – where the performer has to complete a set number of repetitions of an exercise before moving on – will improve strength and muscular endurance. | Varied circuits – where the speed of a timed circuit and the work:recovery ratio changes from circuit to circuit – will improve cardiovascular endurance. |

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Would benefit</th>
</tr>
</thead>
</table>
| - Circuit training is very flexible and can be used to train a range of components of fitness.
- Large groups can train at the same time.
- Circuits are relatively easy to set up. | - Circuit training is not really suitable for individual training.
- Quite a large space is required.
- Technique can be affected by fatigue when performing as many reps as possible in a set amount of time. This can also increase the risk of injury. | - The majority of games players, and is often used by footballers and rugby players. |

Activity

7 a) Design a circuit, with between six and ten stations, to develop cardiovascular endurance.

b) Choose a sport and identify one component of fitness that is essential to that sport. Now add two stations to your circuit that would train that component of fitness.
Interval training and high intensity interval training

Interval training involves alternating between periods of work and periods of rest.

High intensity interval training (HIIT) involves alternating between short periods of intense work in the anaerobic training zone and periods of active recovery in the aerobic training zone.

The two most common forms of HIIT are:

- Long-interval training, with work periods of 15 seconds to three minutes at about 80–85 per cent of maximum heart rate and active recovery periods of the same length.

- Short-interval training, with short periods of work of no more than 15 seconds at as close to maximum heart rate as possible and longer periods of active recovery, possibly up to two minutes.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Would benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Good for inexperienced performers and beginners.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Good for overall fitness.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Trains aerobic and anaerobic fitness.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Can put a lot of pressure on the body's systems, which can lead to injury if they have not been conditioned correctly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Because HIIT is a high intensity workout, your recovery period between training sessions should be at least 48 hours.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Long-interval HIIT benefits games players and middle-distance athletes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Short-interval HIIT benefits racket sports players and sprinters.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fartlek training

Fartlek is a Swedish word meaning ‘speed play’. It involves periods of fast work with intermittent periods of slower work, and is, therefore, a form of interval training. It is usually completed in an outdoor environment, so the varied terrain can be used by the performer to help them vary the speed and work:recovery ratios. It is often used in running, with the performer changing between sprinting, jogging and walking.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Would benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>● No specialist equipment is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Ideal for someone training on their own.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Helps a performer learn how to pace themselves and to understand their physical responses to changes in pace.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Not suitable for groups or teams as it must be tailored to the individual.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● It is an advanced form of training because the performer has to be experienced to ensure the workout is intense but not too intense.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● It can be difficult to keep going so you need self-motivation and self-discipline.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Experienced endurance athletes, especially marathon runners.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Bad weather may be problematic!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Component of fitness trained

Cardiovascular endurance

Activity

8 Take part in a continuous training session, an interval training session and a Fartlek training session. Can you add any more advantages and disadvantages to the lists above?
Diuretic drugs

✔ **Diuretic drugs** remove fluid from the body by increasing the rate of urination. They can help a performer to lose weight quickly in sports that have weight categories, such as boxing and martial arts. They are also often referred to as ‘masking agents’ because they can help reduce the concentration of other prohibited substances in the performer’s urine by excreting it faster.

❌ Diuretic drugs have a range of side-effects, including:

- Increased risk of dehydration
- Increased risk of kidney failure
- Increased risk of heart failure
- Increased risk of muscle cramps
- Increased risk of headaches
- Increased risk of dizziness.

Blood doping

✔ **Blood doping** involves removing a performer’s blood a few weeks before competition, freezing it and then re-injecting it – usually via a blood transfusion – just prior to competition. The body naturally replaces red blood cells after the blood is removed, so that re-injecting it increases the number of red blood cells in the bloodstream, and increases the blood’s oxygen-carrying capacity as a result. This improves a performer’s aerobic capacity. It means they can perform longer before fatigue sets in and their recovery time is shorter. It is, therefore, often used by endurance athletes, such as marathon runners or cross-country skiers.

❌ The side-effects of blood doping include:

- Blood becoming more viscous (thicker)
- Increased risk of heart attack
- Increased risk of infection
- Increased risk of embolism, causing a blood vessel to block
- Increased risk of stroke.

Beta blockers

✔ **Beta blockers** are taken to:

- Reduce heart rate, muscle tension and blood pressure
- Reduce the effects of adrenaline, a natural hormone that is released by the body to speed up heart rate
- Improve fine motor control and preciseness

They steady the nerves and have a calming and relaxing effect, which can be of benefit in sports like archery, shooting, ski jumping and diving.

❌ The side-effects of beta blockers include:

- Nausea
- Tiredness and weakness
- Increased risk of heart problems.
A

Abduction movement of a bone or limb away from the midline of the body.

Ability an inherited, stable trait that determines an individual’s potential to learn or acquire a skill.

Adduction movement of a bone or limb towards the midline of the body.

Aerobic exercise working at a low to moderate intensity so that the body has time to use oxygen for energy production and can work for a long period of time.

Aerobic training zone training in the aerobic training zone allows the performer to develop their ability to work aerobically. It is 60–80% of your MHR.

Antagonist the muscle or group of muscles that relax to allow a movement to take place. The antagonist works in an antagonistic pair with the agonist.

Arousal a physical and mental (physiological and psychological) state of alertness/readiness, varying from deep sleep to intense excitement or alertness.

Articulating bones bones that meet at a joint to enable movement.

Axis an imaginary straight line through the body around which it rotates. There are three types of axis: sagittal, transverse and longitudinal.

B

Backflow the flowing backwards of blood. Valves in the veins prevent backflow.

Balance maintaining the centre of the mass over the base of support. Balances can be static or dynamic.

Balanced diet a diet that contains the right quantity of food so that you consume only as many calories as you expend each day; and the right mix of different types of foods so that the body receives all the nutrients, vitamins and minerals it needs.

Basic skill a simple skill that does not require much concentration.

Beta blockers restricted drugs that steady the nerves by controlling the heart rate. They have a calming and relaxing effect.

Blood doping a prohibited method that involves removing blood a few weeks before competition and then re-injecting it just prior to competition. It increases the number of red blood cells in the bloodstream, increasing the blood’s oxygen-carrying capacity.

Blood pressure the pressure that blood is under. The systolic reading measures the pressure the blood is under when the heart contracts. The diastolic reading measures the pressure the blood is under when the heart relaxes.

C

Calorie a unit of measurement for heat or energy production in the body, normally expressed as Kcal.

Capillaries a network of microscopic blood vessels. They are only one cell thick.

Cardiac cycle one cycle of diastole and systole is called the cardiac cycle.

Cardiac output (Q) the volume of blood ejected from the heart in one minute. Cardiac output (Q) = stroke volume (SV) \times heart rate (HR).

Cardio-respiratory system the name used to describe the respiratory system and the cardiovascular system working together.

Cardiovascular endurance also known as aerobic power. The ability of the heart and lungs to supply oxygen to the working muscles.
Circumduction movement of a bone or limb in a circular pattern; a combination of flexion, extension, adduction and abduction.

Closed skill a skill that is not affected by the environment or performers within it. The skill tends to be done the same way each time.

Commercialisation the management or exploitation of a person, organisation or activity in a way designed to make a profit.

Complex skill a skill that requires a great deal of concentration and coordination to perform.

Contract to compete an unwritten agreement between opponents to follow and abide by the written and unwritten rules of the sport.

Coordination the ability to use two or more different parts of the body together, smoothly and efficiently.

Deep breathing taking slow, deep breaths whilst relaxed.

Dehydration excessive loss of water from the body, interrupting the normal functioning of the body.

Deoxygenated blood blood containing a low concentration of oxygen.

Diastole the phase of the heartbeat when the chambers of the heart relax and fill with blood.

Diffusion pathway the distance travelled during diffusion. The diffusion pathway is short in gaseous exchange.

Direct aggression an aggressive act that involves physical contact with others.

Diuretic drugs prohibited drugs that remove fluid from the body by increasing the rate of urination.

DOMS Delayed Onset Muscle Soreness, the pain you feel in your muscles the day after you exercise.

Dorsiflexion movement at the ankle joint that flexes the foot upwards and decreases the angle at the ankle joint.

Ectomorph a somatotype characterised by being tall and thin, with narrow shoulders and narrow hips.

Effort the force required to move the load. It can also be referred to as ‘force’.

Effort arm the distance from the effort to the fulcrum.

Endomorph a somatotype characterised by a pear-shaped body and a tendency towards fatness. Endomorphs have wide hips and narrow shoulders.

Erythropoietin (EPO) a peptide hormone that increases the red blood cell count and, therefore, the oxygen-carrying capacity of the blood.

Etiquette a convention or unwritten rule in an activity. It is not an enforceable rule but it is usually observed.

Excess Post-exercise Oxygen Consumption (EPOC) the amount of oxygen needed to recover after exercise. It is characterised by an increased breathing rate and deeper breathing after exercise.

Exhalation/Expiration the process of breathing out.

Expiratory reserve volume the amount of air that can be forced out after tidal volume (after a normal expiration). Expiratory reserve volume decreases during exercise.

Extension increase in the angle of bones at a joint.

Externally paced skill a skill that is started because of an external factor. The speed, rate or pace of the skill is controlled by external factors, such as an opponent or the environment.

Extrinsic feedback information a performer receives about their performance from outside themselves, such as from a coach.

Extrinsic motivation the drive to perform well or to win in order to gain external rewards.

Extrovert a sociable, active, talkative and outgoing personality type, usually associated with team sports.

Fatigue physical fatigue is a feeling of extreme or severe tiredness due to a build-up of lactic acid in the muscles or working for a long period of time.

Feedback the information a performer receives about their performance. Feedback can be given during and/or after a performance.

Fine movement skill a skill involving small, precise movements, showing high levels of accuracy and coordination. It involves the use of a small group of muscles.

Fitness the ability to meet, or cope with, the demands of the environment.

FITT principle used to increase the amount of work the body does,
in order to achieve overload. FITT stands for Frequency, Intensity, Time and Type.

Flexibility the range of movement possible at a joint.

Flexion decrease in the angle of bones at a joint.

Frontal plane runs left to right and divides the body into front and back halves.

Fulcrum the fixed point at which a lever turns or is supported. It can also be referred to as the ‘axis’.

G

Gamesmanship attempting to gain an advantage by stretching the rules to their limit.

Gaseous exchange the process where oxygen from the air in the alveoli moves into the blood in the capillaries, while carbon dioxide moves from the blood in the capillaries into the air in the alveoli.

Gross movement skill a skill that uses large muscle groups to perform big, strong, powerful movements.

Guidance a method of conveying information to a performer. Guidance can be visual, verbal, manual or mechanical.

H

Haemoglobin the protein found in red blood cells that transports oxygen (as oxyhaemoglobin) and carbon dioxide around the body.

Health a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity.

Heart rate the number of times your heart beats in one minute. One heartbeat is one contraction and relaxation of the heart. Heart rate is measured in beats per minute (bpm).

Home-field advantage gaining an advantage in a sporting event from being in familiar surroundings, with the majority of the spectators supporting you.

Hooliganism the disorderly, aggressive and often violent behaviour by spectators at sporting events.

Hydration having enough water in the body to enable it to function normally.

Hypertrophy the enlargement of an organ or tissue caused by an increase in the size of its cells. When a muscle is trained, small tears are created. As they heal, they become thicker and increase in size.

I

Indirect aggression an aggressive act that does not involve direct physical contact. It is taken out on an object in order to gain an advantage.

Information processing the name given to the process that a performer goes through when they make and act on decisions. There are four steps in the basic information processing model: input, decision-making, output, feedback.

Inhalation/Inspiration the process of breathing in.

Inspiratory reserve volume the amount of air that can be forced in after tidal volume (after a normal inspiration). Inspiratory reserve volume decreases during exercise.

Intensity the amount of energy needed to complete an activity. Working at a high intensity requires a large amount of energy. Working at a low intensity requires less energy.

Intrinsic feedback information a performer receives from within.

Intrinsic motivation the drive to succeed that comes from within.

Introvert a quiet, shy, passive and reserved personality type, usually associated with individual sports performance.

Isometric contraction a muscle contraction where the length of the muscle does not change when it contracts. There is no limb movement as a result.

Isotonic contraction a muscle contraction where the muscle changes length when it contracts, resulting in limb movement. Isotonic contractions can be concentric (when the muscle contracts and shortens) or eccentric (when the muscle contracts and lengthens).

K

Kinaesthetic feedback received by receptors in the muscles. Physical sensations generated by movements are felt by the performer and provide a form of intrinsic feedback.

L

Lactic acid a mild poison and waste product of anaerobic respiration.

Lever a rigid bar that turns about an axis to create movement. All levers contain a fulcrum, load and effort.

Load the weight or ‘resistance’ that the lever must move.

Load arm the distance from the load to the fulcrum.

Longitudinal axis runs vertically through the body, from head to toe.
Index

30 Metre Sprint Test 64

abduction 10–11, 37, 39
ability 84–7
accepted targets 89
action plans 156–7
adaptation of body 29
adduction 10–11, 37, 39
Adlington, Rebecca 142
aerobic exercise 24
aerobic power see cardiovascular endurance
aerobic training zone 68
age/ageing 110–12, 145
aggression 101, 130–1
agility 46, 51, 54–5
agonist muscles 13
analysis of data 90–1
analyse data 90
analgesics 125, 128
anaerobic exercise 24, 25
anaerobic training zone 69
anaerobic steroids 126, 128
anaerobic exercise 24, 25
anaerobic training zone 69
analgesics 125, 128
anatomy 5–30
aneurysm 21
antagonist muscles 13
applied anatomy 5–30
Armstrong, Lance 129
arteries 21
articulating bones 7
audience see spectators
axes of rotation 40–1
backflow 21
balance 46, 51, 56
balanced diet 146–8
ball and socket joints 9
basic skills 85, 87
Beckham, David 84
behaviour of spectators 130–1
beta blockers 127, 128
billboards 117
blood
deoxygenated blood 19, 21
dopamine 125, 128
oxygenated blood 19, 21
deoxygenated blood 19, 21
diastole 21
diet 26, 146–8
diffusion pathway 16
direct aggression 101
disability 113–14
discrimination 106–7
diuretic drugs 127, 128
DOMS (Delayed Onset Muscle Soreness) 26, 81
docusing on blood 21
dopamine 125, 128
during sleep 28
duration 32–5
eating 32–5
eating disorders 144
B4
beating 17
cardiac output 23
cardiovascular system 19–20
gaseous exchange 16
heart rate 19, 23
respiratory system 15
spirometer trace 18
stroke volume 23
cardiovascular endurance
fitness components 47, 51, 57
high altitude training 76
training types 72–3
cardiovascular system 19–20
cartilage 8
Chiellini, Giorgio 101
circuit training 70–1
circumduction 10, 11, 37, 39
closed season training 79
closed skills 86, 87
clothing 118
commercialisation 116–21
media 116–17, 119–21
sponsorship 118–21
competitive seasons 79
complex carbohydrates 147
cardiac output 23
cardiovascular system 19–20
gaseous exchange 16
heart rate 19, 23
respiratory system 15
spirometer trace 18
stroke volume 23
considering data 54
considering an option 54
contract to compete 124
eating 32–5
eating disorders 144
B4
collections 118
commercialisation 116–21
determination of data 54
determination of an option 54
consideration of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
determination of an option 54
determination of data 54
Index

oxyhaemoglobin 16
Paralympics 114
participation 106–15
age 110–12
disability 113–14
etnicity 109–10
factors affecting 106–15
family 112–13
friends 113
gender 106–8
peers 113
peak seasons 79
PEDs (performance enhancing drugs) 125–9
peers 113
peptide hormones 126, 128
performance
analysis 122, 156–7
feedback 90–1, 92, 96–7
goals 88
knowledge of 97
see also practical performance
performance enhancing drugs (PEDs) 125–9
reasons for taking 128–9
types 125–8
personality types 102
physical health 134, 141
physical ill-health 141
physical training 43–82
cooling down 80–1
exam-style questions 82
fitness 44–65
injury prevention rules 78
principles of 66–7
training seasons 79
training thresholds 68–7
warming up 80–1
physiology 5–30
see also anatomy
planes of movement 40–1
plantar flexion 10, 38, 39
playing seasons 79
plyometric training 76
positive feedback 96
positive self talk 100
post-season training 79
power
fitness components 49, 51, 61
plyometric training 76
weight training 75
practical performance 151–7
analysis/assessment 156–7
decision-making 154
health and safety 155
individual activities 152
problem-solving 154
psychological control 154
skills 153, 154, 156–7
team activities/work 152, 154–5
technique 153, 156–7
pre-season training 79
press ups 33
pressure, blood 21
prime mover muscles 13
principles of training 66–7
print media 117
problem-solving 154
processing information 90–1
progressive overload 66–7
protein 146, 148
provisions 106, 112
psychological control 154
see also sports psychology
pulse 21, 81
Q (cardiac output) 23
radio 116
Redknapp, Harry 113
Redknapp, Jamie 113
rehydration 149
religion 109–10
repetitions (reps) 75
role models 108, 112
rotation
axes of 40–1
basic movements 39
joints 10
Ruler Drop Test 62
safety, health and 155
sagittal axes 40–1
sagittal planes 40–1
saturated fat 147
seasons of training 79
second class levers 33, 35
sedentary lifestyles 139–41
consequences 139
height-weight chart 140
ill-health 141
obesity 139–41
self paced skills 86, 87
self talk 100
serotonin 135
sets of repetitions 75
Simmonds, Ellie 114
Sit and Reach Test 59
Sit-Up Bleep Test 60
skeleton 6–11
bones 6–7
functions of 7
joints 8–11
structure 6–7
skills
classification 85–7
optimum arousal 98–9
practical performance 153, 154, 156–7
sports psychology 84–7
warm up practice 81
SMART (specific, measurable, accepted,
realistic, time-bound) targets 89
social groups 106–15
social health 136, 141
social ill-health 141
social media 117
socio-cultural influences 105–32
commercialisation 116–21
ethical conduct 124–9
exam-style questions 132
participation 106–15
social groups 106–15
spectators 120, 123, 130–1
technology 122–3
sockets see ball and socket joints
somatotypes 142–3
specific targets 89
specificity 66–7
spectators
behaviour 130–1
commercialisation 120
hooliganism 130–1
strategies for 131
technology 123
speed 51, 64
spirometers 18
sponsors 118, 121, 123
sponsorship 118–21
impacts of 119–21
media 119–21
sports psychology 83–104
ability 84–7
aggression 101
arousal 98–100
exam-style questions 104
feedback 90–1, 92, 96–7
goals 88
guidance 92–5
information processing 90–1
motivation 103
personality types 102
skills 84–7
targets 89
sportsmanship 124
static balance 46
static strength 50
static stretching 74, 80
steady state training 72
stereotypes 106
stimulants 125, 128
Stork Stand Test 56
strength
explosive 49, 50
fitness components 50–1, 63, 65
weight training 75