HOW TO USE THIS BOOK

This write-in Workbook is for use with Discovering Mathematics Student Book 2B. It can be used for extra practice in class or as homework activities.

- **Exercises are written for each chapter section**, while Review Exercises test your ability to apply concepts and techniques across a group of chapters.
- Each exercise is split into **three levels**:
 - **Level 1**: simple questions to test your understanding of concepts
 - **Level 2**: harder questions which involve direct application
 - **Level 3**: hardest questions, with a focus on problem solving
- For some questions, **hints are given** to help you.
- Watch for the different icons next to questions:
 - £ and £ highlight the content related to other subjects
 - £ shows where more than one answer is possible
 - £ identifies where you can practise your problem-solving skills
- You are told in the question if you should or shouldn’t use a **calculator**. If there is no instruction, you can decide for yourself or ask your teacher.
- Your teacher can access the answers for you from two places:
 - **Short answers** are available free (and password protected) at www.oxfordsecondary.co.uk/discoveringmathematics-answers
 - **Fully-worked solutions** are on Kerboodle
- Use the **progress tracker** at the start to log your progress and to note where you might need some support as you work through each section.

Printed and Bound by CPI Group (UK) Ltd, Croydon, CR0 4YY

Acknowledgements
The author and publishers would like to thank the reviewer team of consultants - Simon d’Angelo, Liz Henning, Ann Lui, Sian Thomas - and teachers - Pippa Baker, Jill Borchers, Lana Laidler, Jo Walker - who have advised on the content of this book. Their contributions have been invaluable.

Editorial team: Dom Holdsworth, Julie Thornton, Rosie Day, Sarah Dutton, Isobel Fray, Emma Gadsden and Matteo Orsini Jones. With thanks also to Katie Wood for her contributions.

The publishers would also like to thank the following for permissions to use copyright material:

Cover: Matt Anderson Photography/Getty Images

Data: p137, p139 (b): Office for National Statistics; p140 (t): ukpublicspending.co.uk; p143, p152 (b): Office for National Statistics

Although we have made every effort to trace and contact all copyright holders before publication this has not been possible in all cases. If notified, the publisher will rectify any errors or omissions at the earliest opportunity.

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.
CONTENTS

Track Your Progress iv

Chapter 1 Factors and Multiples 1
1.1 Primes, Prime Factorisation and Index Notation 1
1.2 Highest Common Factor (HCF) 4
1.3 Lowest Common Multiple (LCM) 7
1.4 Square Roots, Cube Roots and Prime Factorisation 10

Chapter 2 Approximation and Estimation 13
2.1 Rounding Numbers to Decimal Places 13
2.2 Rounding Numbers to Significant Figures 16
2.3 Estimation 19

Chapter 3 Ratio, Rate and Speed 22
3.1 Integer Ratios 22
3.2 All Kinds of Ratios 25
3.3 Scale Plans and Maps 28
3.4 Rate 31
3.5 Speed 34

Chapter 4 More Percentages 37
4.1 Expressing a Percentage as a Fraction or a Decimal 37
4.2 Simple Percentage Problems 40
4.3 Reverse Percentages 43
4.4 Percentage Increase and Decrease 46

Review 1 49

Chapter 5 Algebraic Expressions, Formulae and Proof 54
5.1 Use of Letters in Algebra 54
5.2 Evaluation of Algebraic Expressions and Formulae 57
5.3 Algebraic Expressions in the Real World 60
5.4 Simplification of Linear Expressions 63
5.5 Proof 66

Chapter 6 Equations and Inequalities in One Variable 69
6.1 Simple Linear Equations in One Variable 69
6.2 Equations Involving Brackets 72
6.3 Forming Linear Equations to Solve Problems 75
6.4 Solving Simple Inequalities 78

Chapter 7 Coordinates and Linear Functions 81
7.1 Cartesian Coordinate System 81
7.2 Idea of a Function 84
7.3 Linear Functions and their Graphs 88
7.4 Gradients of Linear Graphs 91

Chapter 8 Number Patterns 95
8.1 Number Patterns and Sequences 95
8.2 General Term of a Sequence 98

Review 2 101

Chapter 9 Angles in Quadrilaterals and Polygons 107
9.1 Quadrilaterals 107
9.2 Polygons 110

Chapter 10 Perimeter and Area of Parallelograms and Trapezia 113
10.1 Area of Parallelograms 113
10.2 Area of Trapezia 116
10.3 Perimeter and Area of Composite Plane Figures 119

Chapter 11 Volume and Surface Area of Prisms and Cylinders 122
11.1 Views and Nets of Three-dimensional (3D) Shapes 122
11.2 Volume and Total Surface Area of Prisms 125
11.3 Volume and Total Surface Area of Cylinders 128
11.4 Volume and Surface Area of Composite Solids 131

Chapter 12 Statistical Graphs 134
12.1 Line Graphs 134
12.2 Pie Charts 138
12.3 Use and Misuse of Statistical Graphs 141
12.4 Scatter Graphs 145

Review 3 150
LEVEL 1

1. Deanne drives from her home to her office, which is 40 km away. What is her distance from the office after driving
 (a) 13 km?
 (b) d km?

2. A prize of £2400 is shared equally among a team of football players. Find the amount each player gets if there are
 (a) 15 players,
 (b) m players.

3. Simplify these expressions.
 (a) \(a \times 5 \times a \)
 (b) \(3b \times 7c \)
 (c) \(5m + 8n \)
 (d) \(p + 6 - q \times 11 \)

4. Write these statements as algebraic expressions.
 (a) Subtract 6a from the product of 3b and c^3.
 (b) Divide the sum of 2x and 5y by 7z.
5. A box of chocolates costs £6. A box of biscuits costs £4. Find the total price of
(a) two boxes of chocolates and five boxes of biscuits,

(b) \(m \) boxes of chocolates and \(n \) boxes of biscuits.

6. A mathematics book is 2 cm thick. A dictionary is 5 cm thick. Find the total height of a stack of
(a) three mathematics books and four dictionaries,

(b) \(p \) mathematics books and \(q \) dictionaries.

7. There are 500 grams of butter in a refrigerator. Find the remaining amount of butter if
(a) 40 grams are used for cooking and 130 grams are used for baking,

(b) \(c \) grams are used for cooking and \(b \) grams are used for baking.

8. There are 1500 ml of milk in a jug. Find the remaining amount of milk in the jug after
(a) 8 cups of coffee are each topped up with 90 ml of milk from the jug,

(b) \(x \) cups of coffee are each topped up with \(y \) ml of milk from the jug.

9. A metal bar is 156 cm long. A length of \(L \) cm is cut from it. The remaining length is cut into \(m \) equal pieces. Express the length of each piece in terms of \(L \) and \(m \).
10. Kylie's age is four years more than three times her daughter's age. Find Kylie's age if her daughter is
(a) 11 years old,
(b) n years old.

11. A bag weighs B grams. A squash ball weighs 24 grams. A tennis ball weighs 57 grams. Find the total
mass of a bag containing
(a) three squash balls and four tennis balls,
(b) s squash balls and t tennis balls.

12. In his triathlon training, Paul swims s km.
(a) His running distance is 10 km more than twice his swimming distance. Express his running
distance in terms of s.
(b) His cycling distance is 5 km less than three times his running distance. Express his cycling
distance in terms of s.

13. In a compound of carbon, hydrogen and oxygen, there is one oxygen atom. The number of hydrogen
atoms is two more than twice the number of carbon atoms. Find the total number of atoms in the
compound if there are
(a) three carbon atoms,
(b) n carbon atoms.
5.2 Evaluation of Algebraic Expressions and Formulae

LEVEL 1

1. Work out the value of $3n + 7$ when
 (a) $n = 5$, (b) $n = -8$.

2. Find the value of $\frac{24}{2p - 3}$ when
 (a) $p = 0$, (b) $p = 3$.

3. Given that $T = 10 + 3u - 4v$, find the value of T if
 (a) $u = 2$ and $v = -1$, (b) $u = -5$ and $v = -6$.

4. Given the formula $V = x^2h$, calculate the value of V when $x = 3$ and $h = 5$.

5. Given the formula $S = 6p - 3q^2$, work out the value of S if $p = 8$ and $q = -2$.
6. Find the value of $3a(b - c)$ when
 (a) $a = 4$, $b = 7$ and $c = -1$,
 (b) $a = -5$, $b = -3$ and $c = 6$.

7. Work out the value of $p^2 - q^2 + 3r^2$ when
 (a) $p = 2$, $q = 3$ and $r = 1$,
 (b) $p = -4$, $q = -2$ and $r = 5$.

8. Given that $E = \frac{1}{2} m(v^2 - u^2)$, calculate the value of E when
 (a) $m = 3$, $u = 5$ and $v = 1$,
 (b) $m = 4$, $u = 3$ and $v = 11$.

9. If $T = \frac{mn}{p^3 + 1}$, calculate the value of T when
 (a) $m = 8$, $n = 35$ and $p = 3$,
 (b) $m = -21$, $n = 10$ and $p = -2$.

10. If $y = kx^{n+1}$, work out the value of y when
 (a) $k = 5$, $x = 4$ and $n = 2$,
 (b) $k = -7$, $x = 6$ and $n = 0$.
11. The price for \(n \) tickets for a concert is given by the expression \(\mathbf{\£}25n \).
 (a) Find the price for four tickets.

 (b) What does the number 25 in the expression \(25n \) represent?

12. The power \(P \) watts of an electrical appliance is given by the formula \(P = VI \), where \(V \) volts is the voltage of the appliance and \(I \) amperes is the current through the appliance. Find the power of a heater if the voltage is 200 volts and the current is 7 amperes.

13. The parking space for a car is 12 m\(^2\) and the parking space for a motorcycle is 4 m\(^2\). A car park has \(m \) parking spaces for cars and \(n \) parking spaces for motorcycles.
 (a) Express the total parking space for cars and motorcycles in terms of \(m \) and \(n \).

 (b) The total area of the car park is 400 m\(^2\) and the area not used for parking spaces is \(A \) m\(^2\). Write a formula connecting \(m \), \(n \) and \(A \).

 (c) If \(m = 24 \) and \(n = 10 \), find the value of \(A \).

 (d) Explain why you would not want \(A \) to be 0.
5.3 Algebraic Expressions in the Real World

LEVEL 1

1. The bar model shows the prices of two books, where the price of book A is £2x.

 ![Bar Model for Book A and B](image)

 (a) Express y in terms of x.

 (b) If $x = 5$, find the price of book B.

2. The bar model shows two pieces of ribbon cut from a long ribbon.

 ![Bar Model for Ribbon](image)

 (a) Express r in terms of L, p and q.

 (b) The ribbon is 127 cm long. Piece 1 is 48 cm long and piece 2 is 37 cm long. Find the length of the remaining piece.

3. The bar model shows the capacities of a pot and a bucket.

 ![Bar Model for Pot and Bucket](image)

 (a) Express the capacity of the bucket in terms of N.

 (b) If $N = 8$, find the capacity of the bucket.
4. The total mass of an apple and an orange is 450 grams. Let x grams be the mass of the apple.
 (a) Express the mass of the orange in terms of x.

 (b) The mass of the apple is 230 grams. Find the mass of the orange.

5. Amir takes three seconds more to run 200 m than twice the time he takes to run 100 m. Let T seconds be his time taken to run 100 m.
 (a) Express his time taken to run 200 m in terms of T.

 (b) If he takes 12 seconds to run 100 m, how many seconds does he take to run 200 m?

6. In a company, the number of female staff is six more than half of the number of male staff. Let m be the number of male staff and f be the number of female staff.
 (a) Express f in terms of m.

 (b) If there are 18 male staff, find the number of female staff.

7. A tank contains 25 litres of water initially. A tap pours 12 litres of water into the tank every minute. Let V litres be the volume of water in the tank after t minutes.
 (a) Express V in terms of t.

 (b) Find the volume of water in the tank after six minutes.
LEVEL 3

8. The process of making a frame involves cutting, welding and finishing. The time taken for welding is 10 minutes more than the time for cutting. The time for finishing is twice the time for welding. Let x minutes be the time for cutting.

(a) Express the time for welding and the time for finishing in terms of x.

(b) Let T minutes be the time required to make the frame. Find a formula connecting x and T.

(c) If the time for cutting is 15 minutes, find the time required to make the frame.

9. Let n be a date number in the first two weeks of a month.

(a) Express, in terms of n, the next two date numbers that are on the same day of the week as n.

(b) Let S be the sum of n and the two numbers in (a). Write a formula connecting n and S.

(c) Hence find the value of S when $n = 8$.
5.4 Simplification of Linear Expressions

LEVEL 1

1. Expand these expressions.
 (a) $2(4 + a)$
 (b) $5(3b - 2)$
 (c) $(5c - 6)(4)$
 (d) $(1 + 7d)(6)$

2. Expand these expressions.
 (a) $-3(2m + 5)$
 (b) $-6(1 - 3n)$
 (c) $(4p - 7q)(-5)$
 (d) $(-3r - 8s)(-9)$

3. Simplify these expressions.
 (a) $2(a + 3) + 3(a + 8)$
 (b) $5(2b + 1) + 4(b + 7)$
 (c) $(2c - d)(6) + 5(-4c + 3d)$
 (d) $(3m - 2n)(7) + 3(2m - n)$

4. Simplify these expressions.
 (a) $3(p + 5) - 2(4p + 6)$
 (b) $5(2q - 1) - 4(q - 3)$
 (c) $(3r - s)(-7) - 2(5r - 9s)$
 (d) $(-2x + y)(6) - 8(-3x + 4y)$
5. Expand these expressions.
 (a) \(2(3a + 4b + 1)\) \hspace{1cm} (b) \(5(c - 3d + 6)\)
 (c) \(4(3g - 4h - 7k)\) \hspace{1cm} (d) \((-2m - 5n + 3p)(7)\)

6. Expand these expressions.
 (a) \(-3(2q + 3r + 4)\) \hspace{1cm} (b) \(-4(2s - 5t - 1)\)
 (c) \(-5(u - 2v + 3w)\) \hspace{1cm} (d) \((-2x - 8y - 9z)(-2)\)

7. Expand these expressions.
 (a) \(a(3x + 2y)\) \hspace{1cm} (b) \(-2b(5p - q)\)
 (c) \(c(4m - 5n)\) \hspace{1cm} (d) \((4r - 5s)(-d)\)

8. Simplify these expressions.
 (a) \(3(2a + 3b + 1) + 4(3a - 4b - 5)\)
 (b) \((x - 5y)(-3) - (3x - 5y + z)(7)\)
9. The usual price of a shirt is £p. There is a discount of £10 on each shirt.
 (a) Express the total sale price of n shirts in terms of n and p in expanded form, i.e. without using brackets.

 (b) If the usual price of a shirt is £23, find the total sale price of five shirts.

10. The width of a chair is $(2x + 7)$ cm. Seven chairs can be placed along a wall, leaving a gap of 30 cm at one end. Let L cm be the length of the wall.
 (a) Express L in terms of x.

 (b) If $x = 25$, find the length of the wall.

11. The frame for a window consists of six rectangles of width $(3x + y)$ cm and height $(x + 2y)$ cm as shown.
 (a) Express the total length of the material used to make the frame in terms of x and y in expanded form.

 (b) If $x = 8$ and $y = 6$, find the total length of the material used to make the frame.
5.5 Proof

LEVEL 1

1. Determine whether or not each of these is a statement. If it is a statement, state whether it is a true statement or a false statement.
 (a) \(1 \times 2 \times 3 \times 4 = 24\)

 (b) \(1 \times 2 \times 3 \times 4\)

 (c) Volume of a cube = edge length \times edge length

 (d) Odd number + odd number = even number

2. Prove the statement ‘If \(n\) is an even number, then \(n - 1\) is an odd number.’

3. Prove the statement ‘If \(a\) is an odd number and \(b\) is an even number, then \(a - b\) is an odd number.’

4. Prove the statement ‘If \(m\) is a multiple of 6, then \(m\) is a multiple of 3.’
5. If \(n \) is a multiple of 8, show that \(\frac{n}{4} \) is an integer.

6. If \(m \) is an even number, show that \(m^2 \) is a multiple of 4.

7. Given that \(p \) is a multiple of 7 and \(q \) is a multiple of 3, show that the statement
 (a) ‘\(pq \) is a multiple of 21’ is true,
 (b) ‘\(p - q \) is a multiple of 4’ is false.

8. Jenny found that \(1^2 = 1, 9^2 = 81 \) and \(11^2 = 121 \). The last digit of all these square numbers is 1. She claims that the last digit of the square of an odd number is 1.
 (a) Has Jenny correctly proved her claim? Explain your answer.
 (b) Show that Jenny’s claim is false.
9. Harry worked out that $11 + 12 + 13 = 36$ and $17 + 18 + 19 = 54$. He claimed that ‘the sum of three consecutive integers must be even’. Show that his claim is false.

10. If n is an integer, show that
 (a) $6n + 3$ is a multiple of 3,
 (b) $6n + 4$ is an even number,
 (c) $6n + 5$ is an odd number.

11. If m and n are multiples of 5, show that the statement
 (a) ‘$m + n$ is a multiple of 10’ is false,
 (b) ‘mn is a multiple of 25’ is true.

12. Lisa proposes that ‘if p is a prime number, then $p + 1$ must not be a prime number.’ Show that her proposal is not true.