1.1 Systems in physical geography

Section outline
The concept of systems in physical geography and their application to the water and carbon cycles.

Section outcomes
By the end of this section, most students should be able to:
- understand the concept of a system and know the meaning of the terminology associated with it
- understand the difference between an 'open' system and a 'closed' system
- appreciate how systems terminology can be applied to the water and carbon cycles
- be able to represent the water and carbon cycles in the form of a systems diagram
- begin to appreciate the importance of the two cycles and how they are linked together

Key words
- input
- output
- stores
- flows
- feedback
- dynamic equilibrium
- open system
- closed system

What’s on Kerboodle?
- Digital Books
 - Student Book: Pages 8-9
 - Teacher Handbook:

Resources
- Chapter 1 Glossary
- Chapter 1 Glossary worksheet

Assessment
- Chapter 1 On your marks
- Chapter 1 Test yourself

Key skills
Understanding and calculating simple mass balance.

Specification key ideas
- 3.1.1.1 Water and carbon cycles as natural systems

Exam link
- AL: Paper 1 Section A (core)
- AS: Paper 1 Section A (optional)
1.2 The global water cycle

Section outline
The global water cycle and its stores.

Key words
- soil water budget
- lithosphere
- hydrosphere
- cryosphere
- atmosphere

What’s on Kerboodle?
- Student Book: Pages 10-11
- Teacher Handbook:

Section outcomes
By the end of this section, most students should be able to:
- understand the concept of the water cycle system and know the meaning of the terminology associated with it
- understand the concepts of ‘stores’ and ‘transfers’ in the context of the water cycle
- understand the breakdown of global water storage and appreciate the relative proportions of freshwater stores
- interpret and understand the distribution of major freshwater stores – ice caps and groundwater aquifers
- understand the factors affecting global aquifer distribution
- appreciate the potentially unsustainable nature of fossil aquifers

Key skills
Drawing and annotating diagrams of physical systems.

Resources
- Chapter 1 Glossary
- Chapter 1 Glossary worksheet

Specification key ideas

<table>
<thead>
<tr>
<th>AL: Paper 1 Section A (core)</th>
<th>AS: Paper 1 Section A (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1.2 The water cycle</td>
<td>3.1.1.2 The water cycle</td>
</tr>
</tbody>
</table>

Exam link

<table>
<thead>
<tr>
<th>Assessment</th>
</tr>
</thead>
</table>
| Chapter 1 On your marks
| Chapter 1 Test yourself |

© Oxford University Press 2016 • This may be reproduced for class use solely within the purchaser’s school or institution

Acknowledgements: http://www.oxfordsecondary.co.uk/acknowledgements