A programme of additional sessions for children in upper Key Stage 2 not meeting age-related expectations

Focuses on strong re-teaching of key maths topics using an active, practical approach

Suitable for delivery by non-specialists

This 12-week programme includes pre- and post-assessments, familiarization activities and 48 step-by-step sessions across 5 key areas: Number and place value, Adding and subtracting, Multiplying and dividing, Fractions, and Working with fractions, decimals and percentages.

This booklet provides a sample session from each of the five Big Ideas to allow you to see how it could benefit your struggling learners in Years 6 and 7/P7-S1.
Ordering and comparing numbers: 4-digit and 5-digit numbers

Main learning

Step 1
Remind pupils of the music concert scenario in Session 1, where the lower tier of the stadium can seat 3576 people and the upper tier seats 1842 people.

Ask pupils to use base-ten to model these numbers (e.g. 1).

Work together to record these maximum capacity numbers on the Place Value Frame, so that children can keep referring back to them.

Ask pupils: which tier holds more people? (Lower tier) How do you know?

The lower tier can hold more people, because it seats more than 3000 people while the upper tier seats fewer than 2000.

Step 2
Say that on each of the seven evenings in one week, the lower tier was not full but had more than 1000 people.

Ask pupils to explore with apparatus to write seven different possible numbers for the lower tier and write each number onto separate sticky notes. (Encourage a range of numbers from 1000 to 3575, and look for suitable responses.)

Ask pupils to read each number aloud. Listen for correct vocabulary.

Invite pupils to show the number using base-ten apparatus (see 2, which shows 2472).

What is the biggest possible number you could have written? (3575)
Ask pupils to show the numbers using Place Value Arrow Cards and Counters on the Place Value Frame (e.g. 3 and 4).

![Place Value Arrow Cards and Counters](image)

Ask pupils to place the seven numbers from their sticky notes into ascending order.

Step 3

Place 9 Counters into the thousands column (see 5).

![Place Value Frame](image)

Ask pupils what number this is. (9000)

Using Counters, count on from 9000 onto the frame, e.g. 9100, 9200, \ldots 9800, 9900.

If they say ‘9 thousand ten hundred’, ask for another way of saying ‘ten hundred.’ (one thousand)

9 thousand and 1 more thousand is 10 thousand.

Count up again, this time in thousands (1000, 2000, \ldots 9000, 10000) and explore this using the Place Value Frame (see 6).

![Place Value Frame](image)

Game

Look and listen for pupils placing the higher value digits in columns on the left-hand side to give larger numbers.

- Use a 0–9 dice (or a Spinner with 0–9 Overlay) and one Place Value Frame per player.
- Take it in turns to throw the dice and decide which column to write the digit into.
- Repeat until each player has written 5 digits.
- The player who has the biggest number is the winner (e.g. 7).

Varying and repeating

The game can be repeated to provide further practice. It can be varied so the winner is the player with the smallest number.

Assessing and reflecting

- Watch the pupils playing the game. Do they know to insert the largest digit into the highest value column that is available. Are they placing low digits into TTh and Th columns too soon, thus making their final number low?
- Written Assessment Question Unit 2, 2.

Discuss how pupils can use their learning outside the session, and complete their Learning Log (PCM 1) to reflect on the maths they have done so far.

Continuing the learning

Pupils play the game again at home with their friends or parents. Change the rules, e.g. the winner is the person with the smallest number.

Further teaching and practice

NPC 4, Numbers and the Number System 2, Activities 2 and 3 NPC 5, Numbers and the Number System 1, Activities 6 and 7 MyMaths lessons: Working with thousands (1972); Place value hundreds and thousands (1352)

Sowing the seeds for the next session

Ask pupils how many ten thousands is the maximum that can go in the ten thousands column. (9)

Count up from 90000 in thousands (91000, 92000, \ldots 99000, 100000). Listen for ‘ninety ten’ thousand and encourage ‘one hundred thousand’.

Educational context

• To understand the quantity and column value of numbers to 100 000.

Have ready Overlay from PCM 42)

Ask pupils to use base-ten to model these numbers (e.g. 8422, 90001, 100000).

Say that on each of the seven evenings in one week, the lower tier was not full but had more than 1000 people. The upper tier was full but had fewer than 2000 people.

Step 2

• Watch the pupils playing the game. Do they know to take digits away from column values to zero if they are not available?

The game can be repeated to provide further practice.

The rules can be changed, e.g. the winner is the person with the smallest number.

At the end of the game ask: can you read your number? Can you place the numbers in ascending order? (e.g. 77534, 85221, 96310)

Challenge: How far away from 100000 is each player?

Varying and repeating

The game can be repeated to provide further practice.

It can be varied so the winner is the player with the smallest number.

Assessing and reflecting

- Watch the pupils playing the game. Do they know to insert the largest digit into the highest value column that is available. Are they placing low digits into TTh and Th columns too soon, thus making their final number low?
- Written Assessment Question Unit 2, 2.

Discuss how pupils can use their learning outside the session, and complete their Learning Log (PCM 1) to reflect on the maths they have done so far.

Continuing the learning

Pupils play the game again at home with their friends or parents. Change the rules, e.g. the winner is the person with the smallest number.

Further teaching and practice

NPC 4, Numbers and the Number System 2, Activities 2 and 3 NPC 5, Numbers and the Number System 1, Activities 6 and 7 MyMaths lessons: Working with thousands (1972); Place value hundreds and thousands (1352)
Unit 6: Fractions, decimals and percentages

Percentages

Main learning

Step 1
Discuss that percentages are another way of dealing with fractions.

Draw out from pupils that percentages are hundredths, but instead of writing a fraction, e.g. \(\frac{50}{100} \), a percentage is written, e.g. 50%.

Look and listen for pupils who are able to see that the symbol '%' looks like it is made from '/100 or '/100.

Discuss that the Decimal Baseboard shows 100 parts of one whole and use the Baseboard and Numicon Shapes to help pupils visualize some percentages (see 1).

This shows 38 out of 100. It is an image of 38%.

Ask pupils to work together using the Decimal Baseboard and Numicon Shapes to show 20%, 27% and 45%.

Step 2
Discuss that percentage values are as easy to compare as whole numbers.

Explore how they can be compared visually, e.g. use two 100 squares and shade the first 100 square to show 55%, then shade in the second 100-square to show 57% (see 2).

Step 3
Explore further the relationship between percentages using a Decimal Baseboard and Numicon Shapes.

Discuss that 5% = \(\frac{1}{20} \times 10\% \) and look for pupils who can show this with a 10-shape and a 5-shape (see 3).
Ask pupils to explore and show that 15% is 10% + 5% (see 4).

Ask pupils to show how these percentages could be represented in a similar way:

- 20% = 2 × 10%
- 60% = 50% + 10%
- 19% = 20% – 1%

What Shapes will pupils choose to show these percentages on the Baseboard?

Step 4

Set the scene of a sale in a sofa shop.

Can pupils find out what 40% is of a sofa that costs £2200?

Explore finding percentages of amounts by interpreting the vocabulary and symbols.

Look and listen for pupils who can explain that 40% = \(\frac{40}{100} \) which means 40 ÷ 100.

Discuss that ‘of’ means ‘multiply’ or ‘times’ (×), so finding 40% of £2200 has two steps:

- £2200 ÷ 100 = £22
- £22 × 40 = £880

The first operation divides to give 1% of £2200, the second operation multiplies to give 40%.

Look and listen for pupils making the connection that they now need to subtract £880 from £2200 to find the new price of the sofa. (£1320)

Challenge: Another sofa was originally £1900. If the sale reduction is 30%, what is the new price? Which sofa is cheaper?

Varying and repeating

Repeat the session using a 100-bead string to show percentages, i.e. 100 beads represent 100%, so how many beads will show 42% or 52%?

Use the bead string to represent £600 and discuss how much 1 bead, or 10 beads, represents.

Activity

Look and listen for pupils who are able to find percentages totalling 100%.

- Use Blank 100 Squares as your grids for designing a park.
- Work in pairs. Give your partner percentages to use for designing their park, e.g. 50% grass, 20% water, 20% play area, 10% trees, making sure they total 100%.
- Design, shade and label the correct number of squares for each element of your park, and give your design to your partner to check.

Assessing and reflecting

- Which is more money, 20% of £300 or 40% of £200?
- What is 40% of £1200?
- Written Assessment Question Unit 6, 3.

Challenge:

- If there are 25 cars and 5 of them are red, what percentage of the cars are red? How did you work it out?

Discuss how pupils can use their learning outside the session, and complete their Learning Log (PCM 1) to reflect on the maths they have done so far.

Continuing the learning

Ask pupils to design a garden area for their school, this time giving each other percentages that are not multiples of ten, e.g. 45% flower beds, 25% paving, 15% shed, and so on.

Can pupils work out what 10% off and 50% off are for some prices of items in a shop? Discuss the savings and the wording of sales signs, e.g. the use of ‘off’, ‘of’, and ‘up to’.

Further teaching and practice

Numbers and the Number System 7; Calculating 11
MyMaths lessons: Percentages of amounts 1 [1030]; Percentages of amounts 2 [1031]
Adding and subtracting money

Session 2

Main learning

Step 1
Give pupils copies of the Cafe and Curry Menus sheet. Look together at the Cafe Menu (see 1).

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chef's salad</td>
<td>£7.99</td>
</tr>
<tr>
<td>Soup</td>
<td>£5.25</td>
</tr>
<tr>
<td>Tomato pasta</td>
<td>£7.90</td>
</tr>
<tr>
<td>Chunky chips</td>
<td>£2.45</td>
</tr>
<tr>
<td>Coffee</td>
<td>£1.90</td>
</tr>
<tr>
<td>Orange juice</td>
<td>£1.49</td>
</tr>
<tr>
<td>Water</td>
<td>£0.75</td>
</tr>
</tbody>
</table>

Ask pupils to choose an item from the Cafe Menu and find the correct amount of money from the coins provided. Discuss how this can be represented on the Place Value Frame. Ask what the column values would be (ones, tenths, hundredths). Place the coins on the Decimal Place Value Frame, e.g. Soup £5.25 (see 2).

Look and listen for pupils who can interpret coins in terms of decimals and talk about pence as tenths and hundredths.

When dealing with money, the decimal point separates the pounds from the pence.

Remind pupils that one penny is one hundredth of £1. Repeat with other amounts, including zero as a place holder. Ask pupils if the cost of the tomato pasta could be written as £7.9 instead of £7.90.

Look and listen for pupils who realize that 0 as a place holder is important in the context of money.

We always write money to two decimal places or in whole numbers.

Step 2
Tell pupils you have chosen one item of food – soup – and one drink – orange juice – and need to find the total. Ask them to estimate the answer (£5 + £1.50 = £6.50).

Educational context

This session focuses on adding and subtracting, using the written column method explored in Unit 3, but with numbers up to two decimal places in the context of money. Pupils calculate with money where regrouping is extended to decimals. Encourage pupils to continue estimating an answer before carrying out the calculation.

Prior learning
Secure understanding of place value with numbers up to two decimal places
Using the written column method for adding and subtracting

Making connections
In Unit 3, pupils are introduced to the column method for adding and subtracting, and in Unit 7, they work on decimals.

Objectives
- To know that the decimal point separates the whole and fractional parts in decimal notation.
- To add and subtract numbers up to two decimal places using the column method.
- To solve simple money problems involving numbers to two decimal places.

Vocabulary
estimate, more, column addition, regrouping, column value, difference, pence, pound, tenths, hundredths, decimal point, zero as a place holder

Have ready
£1, 10p and 1p coins or Coins (PCM 13)
Place Value Frame – Decimals (PCM 34)
Numeral Cards 0–9 (PCM 27)
Cafe and Curry Menus (PCM 11)
Written Assessment Question Unit 8, 2 (PCM 6b)
Unit 8: Adding and subtracting

Work out the exact calculation using the coins and Place Value Frame (674) and then work through the calculation together, using the column method.

Look and listen for pupils applying their understanding of the written method to decimals when regrouping (see 3).

Step 3

Ask pupils to choose two items from the menu and find the total cost. Repeat for several calculations to reinforce understanding of decimal places.

Step 4

Ask the pupils to find the difference between the price of the soup and the tomato pasta.

Look and listen for pupils who realize that this is a subtracting calculation. Ask them to estimate the answer. (6 - 5 = 1)

Together, explore the calculation using the coins and Place Value Frame (TO-th). Work through the calculation using the column method (7.90 - 5.25 = 2.65).

Look and listen for pupils understanding the written method for decimals when regrouping for subtraction (see 1).

Encourage pupils to record the final answer as 2.65 and check with their estimate.

Step 5

Ask pupils to choose two items from the menu and find the difference. Repeat for several calculations to reinforce understanding of decimal places and regrouping.

Sowing the seeds for the next session

The label on this bottle reads 1.750 l. This number has three decimal places. How would you say this number? What is the value of each digit? Use 0-9 Numeral Cards on the Place Value Frame to represent the number.

Varying and repeating

Vary the numbers involved, as appropriate – increasing or reducing the number of digits and the amount of regrouping involved.

Game

Look and listen for pupils using estimating to find approximate answers and using subtracting (to two decimal places) to find the difference.

- Use the Curry in a Hurry section of the Cafe and Curry Menus sheet. Play in pairs.
- Take turns to choose a curry, rice and side dish. Estimate first and then write the bill, including finding the total cost of the three items.
- Ask a partner to check the total bill by using the inverse.

Assessing and reflecting

- Benji orders chicken Kung Po £5.35, egg-fried rice £2.55, a vegetable spring roll £1.75 and a glass of lemonade. He spends £11.90. How much does the glass of lemonade cost? (£2.25)
- Written Assessment Question Unit 8, 2.

Challenge:

- Apples cost 56p each and grapes cost £1.50 for 1 kg. Kristie buys 3 apples and 1.5 kg of grapes. How much does she spend? (£3.93)

Discuss how pupils can use their learning outside the session, and complete their Learning Log (PCM 1) to reflect on the maths they have done so far.

Continuing the learning

Collect menus from restaurants or takeaways. Ask pupils to choose items to make an imaginary order from these, and work out the total cost.

Discuss the importance of reviewing the numbers involved in a calculation to determine whether a mental or written strategy is most appropriate, and that larger numbers or decimals do not automatically make the calculation more complicated.

Further teaching and practice

NPC 4, Numbers and the Number System 6 and 8
GMS 4, Measurement 2
MyMaths lessons: More written methods (1908); Adding decimals in columns intro (1381)
Interpreting remainders

Educational context
This session focuses on dividing that results in a remainder and how to interpret that remainder as a number, as a fraction and as a decimal. This builds on the dividing work covered in Unit 9, Session 3.

Prior learning
Decimal numbers
Fractions
Dividing by 2, 5, 10

Making connections
Pupils build on other work on dividing, even and odd numbers, fractions, decimals, money and mixed numbers.

Objectives
• To recognize a remainder.
• To convert remainders to fractions and decimals.
• To write a remainder as a number, fraction or decimal.
• To write the quotient as a mixed number.

Vocabulary
divide, equally, left over, remainder, exchange, dividend (the quantity to be divided), divisor (the number divided into another number), quotient (the result of a division)

Have ready
Numicon Shapes
Baseboard Laminate
Counters
£1, 20p and 10p coins or Coins (cut from PCM 13)

Spinners and Dividends and Divisors Overlays (PCM 47)
Written Assessment Question Unit 9, 4 (PCM 6b)

Main learning
Step 1
Set out 21 with Numicon Shapes (two 10-shapes and one 1-shape, see 1).
Ask pupils how to divide this into 2 equal amounts.

Twenty-one divided by two equals ten remainder one.

Discuss the Shapes and remind pupils about even and odd numbers.
Ask what happens when 1 is divided by 2.
Listen for pupils recalling that $1 \div 2 = \frac{1}{2}$.
Discuss what decimal occurs when 1 is divided by 2 (0·5).
Set out 21 again, this time with ten 2-shapes and one 1-shape (see 2) and ask pupils to divide these by 10, into 10 equal parts.

21 ÷ 10 = 2 remainder 1.

Discuss what happens when 1 is divided by 10.
Listen for pupils suggesting one tenth or $1 \div 10 = \frac{1}{10} = 0\cdot1$.
Explore the idea that remainders can be expressed in three ways:
• The number left over (remaining)
• A fraction
• A decimal.

Step 2
Ask pupils to imagine that five friends had worked together to tidy a garden and were paid £12 altogether.
Discuss how much each friend gets if they share this equally (see 3).

Give pupils twelve £1 coins to share between the five friends.

Two pounds each, remainder 2.
Discuss what to do with the £2 remaining.
Look and listen for pupils exchanging two £1 coins for twenty 10p coins and sharing again (see 4).

Two pounds and forty pence multiplied by five.

Discuss how the £2 and 40p can be written (£2.40 or £2 and £20).
Ask pupils to show what fraction is created by the 40p if the 10p coins are exchanged for 20p coins ($\frac{2}{5}$).
Challenge: If the five friends tidy another garden and are given £16, how much does each friend get? (£3.20 or £3 and £2)

Step 3
Say that the 5 friends pick 24 apples from their own garden.
Ask pupils to work out how many apples each friend will get if they share them equally.
Listen for pupils who suggest calculating 24 ÷ 5.
Use a Baseboard and Counters to show that the friends would get 4 apples each with 4 left over (see 5).

Four apples each, remainder four.

Explore writing the answer to 24 ÷ 5 as a mixed number, 4 and as a decimal, 4.8 (see 6).
Challenge: Ask pupils to work out sharing 23 apples between the 5 friends (4 3/5 or 4.6).

Step 4
Show the dividing calculation 56 ÷ 5, using the short written method of dividing (see 7).
Discuss how the remainder (1) can be divided by 5: 1 ÷ 5 = \(\frac{1}{5}\), and can also be written as a decimal, 0.2.
Ask pupils to solve the dividing calculation 46 ÷ 4 and to write the remainder as a fraction (11 3/4).
Look and listen for pupils who can make the connection that the fraction can be simplified to 11 3/4, and can also be written as a decimal, 11.5.

Sowing the seeds for the next session
Discuss that if there are 12 half sandwiches, 12 × $\frac{1}{2}$ = number of whole sandwiches (6).
Can pupils work out how many quarter sandwiches can be made from them? (24)

Varying and repeating
Repeat Step 1 using the Baseboard and Counters.
Pupils divide £18 and £24 between the five friends in Step 2, and 36 apples between the friends in Step 3.

Game
Look and listen for pupils dividing and identifying remainders correctly.
• Use two Spinners with Dividends and Divisors Overlays.

![Spinners](image)
• Play the game in pairs. Take turns to spin the two Spinners.
The first Spinner is for the number to be divided (dividend) and the second Spinner is for the divisor, i.e. Spinner 1 ÷ Spinner 2.
• If the quotient (the result) has a remainder, then you score 1, no remainder scores 0.
• The first player to score 5 wins.

Assessing and reflecting
• Divide 101 by 5 and write the remainder as a fraction.
• Divide 101 by 10 and write the remainder as a decimal.
• Written Assessment Question Unit 9, 4.
Challenge:
• Divide 67 by 5 and write the remainder as a fraction.
Discuss how pupils can use their learning outside the session, and complete their Learning Log (PCM 1) to reflect on the maths they have done so far.

Continuing the learning
Pupils play the game again and can score a bonus point if they can express a remainder as a fraction and a decimal.
The first player to score 10 wins.
Ask pupils if they can say which of these dividing calculations results in a remainder and how they know:
- 12 ÷ 2
- 13 ÷ 2
- 23 ÷ 2
- 55 ÷ 5
- 70 ÷ 5
- 31 ÷ 5
- 101 ÷ 10
- 950 ÷ 10
- 655 ÷ 10

Further teaching and practice
NPC 5, Calculating 4, 8, 9 and 13
MyMaths lesson: Interpreting remainders (1767)
Comparing and ordering fractions

Session 4

Main learning

Step 1
Give pupils 10-rods and 2-rods to compare fractions with the same denominator.
Can pupils show you how to use a 10-rod to represent 1 and the 2-rods to represent \(\frac{1}{5} \)? (see 1)

The denominators are the same, so the size of the fraction is determined by the value of the numerator.

Ask pupils how they know that the 2-rod is \(\frac{1}{5} \).
Listen for pupils reasoning that five 2-rods are the same length as the 10-rod representing 1, so one 2-rod = \(\frac{1}{5} \) or \(\frac{2}{10} \).

Step 2
Give pupils 1-, 2-, 5- and 10-rods to use to compare tenths (see 2).

Ask them to use the 10-rod to represent 1 \((\frac{10}{10}) \).
Discuss how we know the 5-rod is \(\frac{5}{10} \) (it represents half of 1, or \(\frac{10}{2} = \frac{5}{5} \)).
Challenge: Which is the biggest fraction in 2 \(\frac{5}{10} \) and which is the smallest \(\frac{1}{10} \)?

Step 3
Work together to compare fractions with the same numerator.
Use the same number rods as in Step 2 with the equivalent fraction names (see 3).

Listen for pupils discussing the relative fraction sizes.
Ask them to identify the biggest fraction less than 1 \((\frac{4}{5}) \) and the smallest \((\frac{1}{10}) \).
Explore putting the fractions in order of size, starting with the biggest (see 1):

If the numerators are the same, then the bigger the denominator, the smaller the fraction.

1 \(\frac{1}{2} \) > \(\frac{1}{5} \) > \(\frac{1}{10} \)
Unit 10: Fractions

Step 4
Give pupils a strip of paper to represent 1.
Ask them to fold it in half and write $\frac{1}{2}$ at the fold.
Then ask them to fold the half into half to make quarters and write $\frac{1}{4}$ at the first fold.
Discuss where $\frac{1}{10}$ would be on the strip and ask pupils to mark it on.
Look and listen for pupils identifying the positions of the fractions correctly (see 3).

Ask them to identify the biggest fraction (\(\frac{1}{2}\)) and the smallest (\(\frac{1}{10}\)).
Explore putting the fractions in order of size, starting with the biggest (see 6).

\[
\frac{1}{2} > \frac{1}{4} > \frac{1}{10}
\]

Sowing the seeds for the next session
Using number rods or Shapes to illustrate their thinking, can pupils explain why it is possible to add fractions with the same denominator, but not fractions with different denominators? (The denominators show the kind of fraction being added, so need to be the same.)

Varying and repeating
Use 10-, 5-, 2- and 1-shapes to set up a Shapes version of the number rods in Steps 2 and 3 (see 7).

Fold the paper strip in Step 4 into thirds and sixths to compare, e.g. $\frac{1}{6}, \frac{1}{3}, \frac{1}{2}$.

Game
Look and listen for pupils identifying the numerators and denominators and comparing fractions correctly.

- Use a Spinner and a Numerals Overlay.
- Take turns to spin the Spinner twice.
- Player 1’s first spin gives the denominator of their fraction and the second spin gives the numerator.
- The next player does the same.
- Write down and compare the two fractions (or more, if playing in a group).
- The biggest fraction scores a point.
- Decide how many points to score for a win.

Note that this will generate proper and improper fractions.

Assessing and reflecting
- Which of these fractions is the biggest: $\frac{6}{11}, \frac{3}{11}, \frac{9}{11}$ or $\frac{5}{11}$?
- What are two proper fractions bigger than $\frac{1}{2}$?
- Written Assessment Question Unit 10, 4.

Challenge:
- A running track is 400 m. What fraction of a kilometre is this in tenths and in fifths?

Discuss how pupils can use their learning outside the session, and complete their Learning Log (PCM 11) to reflect on the maths they have done so far.

Continuing the learning
Pupils play the Game again, this time comparing the fractions and the player with the smallest fraction wins a point.

Can pupils collect information to present to a partner using fractions, e.g. there are 20 cars in the car park: $\frac{5}{20}$ are silver, $\frac{4}{20}$ are black, $\frac{5}{20}$ are red and $\frac{5}{20}$ are blue?

Further teaching and practice
NPC 5, Calculating 4, 14 and 15
MyMaths lessons: Comparing fractions (1075); Comparing scalable fractions (1844)
Numicon Big Ideas

This sample contains one session from each of the five Big Ideas:

- Ordering and comparing numbers: 4-digit and 5-digit numbers from Number and place value
- Percentages from Fractions, decimals and percentages
- Adding and subtracting money from Adding and subtracting
- Interpreting remainders from Multiplying and dividing
- Comparing and ordering fractions from Fractions

A printable PDF version of this sample is available online at www.oxfordprimary.co.uk/numicon.

Three easy ways to order:

1. Visit www.oxfordprimary.co.uk/numicon

2. Call our friendly Customer Service team on 01536 452610

3. Email your order to school.orders.uk@oup.com

<table>
<thead>
<tr>
<th>Title</th>
<th>ISBN</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Ideas Manual</td>
<td>978 0 19 841704 0</td>
<td>£150.00</td>
</tr>
<tr>
<td>Big Ideas Apparatus Pack</td>
<td>978 0 19 842139 9</td>
<td>£175.00</td>
</tr>
</tbody>
</table>