Homework notes for Parents
Stage 4
Contents

Contents ... 2
Helping your child .. 3
 Helping your child with the language of maths .. 3
 What can you do at home to help children learn maths? ... 3
 Develop a positive attitude to maths .. 3
 Point out the maths in everyday activities ... 4
 Take time to discuss problems and solutions ... 4
What your child will be learning ... 6
 Number ... 8
 What your child will be doing this year ... 8
 How this topic is taught at this level ... 8
 Some ideas for supporting learning at this level ... 8
 Geometry .. 10
 What your child will be doing this year ... 10
 How this topic is taught at this level .. 10
 Some ideas for supporting learning at this level ... 10
 Measure .. 11
 What your child will be doing this year ... 11
 How this topic is taught at this level .. 11
 Some ideas for supporting learning at this level ... 11
 Data .. 12
 What your child will be doing this year ... 12
 How this topic is taught at this level .. 12
 Some ideas for supporting learning at this level ... 12
Glossary .. 14
Helping your child

The maths that your child is learning may be different from the maths that you did at school. This is because modern maths teaching aims to make maths meaningful to children and to engage them in practical, problem-solving activities designed to build on what they already know and to pave the way for what they will learn in the next level.

Helping your child with the language of maths

There are two main reasons why children need to understand mathematical language.

- Mathematical language is needed to answer questions in lessons, to make sense of the activities or tasks the teacher gives them and to understand the questions asked in tests.
- Mathematical terms are necessary for the development of mathematical ideas and for understanding concepts. You need to understand and use the correct vocabulary to make progress in different areas of mathematics.

Children can get confused by language in mathematics for different reasons:

- Some words used in maths have different meanings in everyday life and this can be confusing. For example, table, net, area and face mean different things in real life and in mathematics. Even simple words like ‘sum’ can be confusing. This word means ‘the answer to an addition’ in mathematics, but in real life people often use it to talk about any calculation.
- Children do not understand the instructions in activities or questions. For example, when children are asked to circle the correct answer or to show two ways of finding the answer they may not know what to do.
- Some children may not have heard special mathematical terms or know what they mean. For example, product, factor, divide, subtract or find the sum of.

What can you do at home to help children learn maths?

There are many things that you can do at home to support what your child is learning at school and to help them develop skills and confidence in maths. Some general things you can do are outlined here and activities linked to maths strands are given on separate cards.

Develop a positive attitude to maths

- Be positive about your own maths knowledge and abilities. Children learn by listening and watching you. Try not to say things like: ‘I never liked maths at school.’ Or ‘I was useless at school maths.’ Even if you don’t feel confident with maths, don’t voice this out loud. Be especially careful of suggesting that girls might not be as good at maths as boys.
- Tell and show children that everyone can learn maths and that maths is important and fun. Start by pointing out how you use maths in your daily life and then show...
them how different people in the family and community use maths in their working lives.

- Encourage persistence – children need to learn that it is OK to try different approaches, especially if the first one doesn’t seem to solve the problem.
- Offer praise and encouragement for effort and achievement.

Point out the maths in everyday activities

- Counting and number activities can be found all around us. Point out numbers and talk about how they are used and ask children to name them to help with number recognition.
- As you go about your daily tasks, point out how you and others are using maths and encourage your child to tell you what maths he or she sees in daily activities. For example, the shopkeeper is counting the money, the tiler is putting shapes together and I am using this spoon to measure the correct amount of medicine to give you.
- Involve your child in activities that use maths – shopping, measuring ingredients, building, sewing, using public transport and gardening – all offer opportunities to talk about numbers, measures or shapes.
- Play games and do puzzles with your child – try to include number games and puzzles, logic and sorting puzzles and shape puzzles.
- Point out when you use ‘tools’ that can help with maths – for example, rulers and tape measures, a calculator, the calendar or alarm on your phone, measuring cups and containers and patterns or moulds.

Take time to discuss problems and solutions

Children will use different methods to solve problems. Encourage them to tell or show you how they worked out an answer. Talking about your ideas and listening to other people’s ideas helps to build understanding and teaches mathematical reasoning.

The maths your child is doing and the methods they are using to do things may be different from how you remember or were taught. Your child may also be doing less written work than you remember doing at that stage. Discuss any concerns you have with the teacher and be aware that things are done in a specific order for a reason. Teaching your child a different method of doing things before they are ready for it may in fact make things more difficult for them and prevent them from understanding and developing the concepts they need for success overall.
Your child’s teacher will introduce new words and teach the children what they mean. You can help your child learn these words by using them correctly yourself when you work through homework or do activities with your child. For levels 3 to 6, there is a glossary of key mathematical words at the back of your child’s book. You will find the Stage 4 Glossary at the end of these notes.

Encourage your child to explain what the words mean while he or she does their work. Ask them questions to make sure they can use the words correctly and tell you what it means.

Asking your child questions about what they are doing can help them develop their thinking and understanding. Here are some examples of the things you could ask.

<table>
<thead>
<tr>
<th>Before your child starts an activity</th>
<th>While your child is working</th>
<th>If your child doesn’t know what to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ How are you going to do this?</td>
<td>✓ What have you done so far? What else do you need to do?</td>
<td>✓ Why don’t you tell me what you have done so far?</td>
</tr>
<tr>
<td>✓ What equipment do you need?</td>
<td>✓ Why did you choose this way of working?</td>
<td>✓ What did you do in class? How is this different?</td>
</tr>
<tr>
<td>✓ What are you trying to find out?</td>
<td>✓ Could you have chosen another way?</td>
<td>✓ Could you try this with easier numbers?</td>
</tr>
<tr>
<td>✓ What information is given?</td>
<td>✓ What does this mean?</td>
<td>✓ Have you tried using a number line?</td>
</tr>
<tr>
<td>✓ Will you add, subtract, multiply or divide to get the answer?</td>
<td>✓ Do you think this method would work with other numbers? Why?</td>
<td>✓ Do you know anything that could help you do this?</td>
</tr>
<tr>
<td>✓ Are you going to work mentally or using a written method?</td>
<td>✓ Is your answer correct? Is there a way of checking?</td>
<td>✓ Would it help to put things in a different order?</td>
</tr>
<tr>
<td>✓ What method will you use to solve the problem? Why?</td>
<td>✓ Do you think there is a faster way of doing this?</td>
<td>✓ Could you draw a picture to help you?</td>
</tr>
<tr>
<td>✓ How are you going to record your working?</td>
<td>✓ How did you get this answer?</td>
<td>✓ Would it help if you made a table?</td>
</tr>
<tr>
<td>✓ Do you need to estimate before you start working?</td>
<td>✓ Did you come across any new words in this activity? Which?</td>
<td>✓ What else could you try?</td>
</tr>
</tbody>
</table>
What your child will be learning

In primary school there is a focus on number skills (counting and place value) and number operations (adding, subtracting, multiplying and dividing) as these are important building blocks for other concepts. But maths is about more than just numbers and your children will also be learning about measures (length, mass, capacity, time and money), shapes (flat shapes and solids), position, patterns and graphs. Children will learn these things by:

- exploring and investigating
- thinking and talking about what they are exploring or investigating
- finding information and using it to solve problems
- explaining how they worked and how they reached their answers
- learning that there is more than one way to solve a problem.

You may find that your children do less ‘written number work’ than you did when you were their age. This is because research has shown that simply practising calculations (doing lots of the same types of sum, for example) does not teach people how to apply mathematics and use it to solve problems. The new approach to maths teaching aims to make sure that all children become able to think mathematically and to help make sure children develop positive feelings about maths.

The concepts and skills that children need to learn each year are carefully planned and organised so that:

- concepts and skills are introduced at the right time and at the right level
- each year builds on what the children already know.

The curriculum for each year is divided into five strands. These are:

- Number (number sense and counting, mental strategies and calculation methods)
- Geometry (shapes, position and movement)
- Measure (length, mass and capacity, money and time)
- Handling data (organising and sorting data and drawing diagrams and graphs)
- Problem solving.

Although problem solving is a separate strand it is not taught separately because it is built into all the other strands.
By the end of Stage 4 your child should be able to do the following:

<table>
<thead>
<tr>
<th>Number</th>
<th>Geometry</th>
<th>Measures</th>
<th>Data Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Read and write numbers to at least 10 000</td>
<td>✓ Identify, draw, describe and classify 2D shapes using their features; identify right angles in 2D shapes; draw in lines of symmetry on 2D shapes</td>
<td>✓ Choose and use the best units and instruments to measure and record length, mass and capacity</td>
<td>✓ Collect, organise and interpret data to answer questions using:</td>
</tr>
<tr>
<td>✓ Count on and back in ones, tens, hundreds and thousands, count on and back in steps of twos, threes, fours, fives and tens, and count on and back in ones, tens, hundreds and thousands from a given number</td>
<td>✓ Order and compare numbers, place them on number lines and use the symbols < and > to compare them; estimate where numbers would lie on a number line</td>
<td>✓ Know the relationships between metric units</td>
<td>- tally charts and frequency tables</td>
</tr>
<tr>
<td>✓ Order and compare numbers, place them on number lines and use the symbols < and > to compare them; estimate where numbers would lie on a number line</td>
<td>✓ Identify, describe, make and classify 3D shapes and make nets of common solids</td>
<td>✓ Use decimal notation to record measurements and interpret intervals/divisions on a range of measuring scales, correctly recording the measurements shown</td>
<td>- pictograms and bar charts</td>
</tr>
<tr>
<td>✓ Explain what each digit represents in three- or four-digit numbers, partition numbers into hundreds, tens and ones, and round numbers to the nearest 10 and 100</td>
<td>✓ Find examples of shapes and symmetry in the environment and in art</td>
<td>✓ Compare graphs where the scale has different intervals</td>
<td>✓ Compare graphs where the scale has different intervals</td>
</tr>
<tr>
<td>✓ Understand and use fraction notation including mixed fractions; recognise which fractions are equivalent and order and compare fractions</td>
<td>✓ Use negative numbers in context</td>
<td>✓ Use Venn diagrams and Carroll diagrams to sort numbers or objects using two or three criteria</td>
<td>✓ Use Venn diagrams and Carroll diagrams to sort numbers or objects using two or three criteria</td>
</tr>
<tr>
<td>✓ Understand decimal notation for tenths and hundredths (two places) and understand equivalence of decimals and vulgar fractions</td>
<td>✓ Use negative numbers in context</td>
<td>✓ Understand simple ratio and proportion</td>
<td>✓ Use negative numbers in context</td>
</tr>
<tr>
<td>✓ Understand decimal notation for tenths and hundredths (two places) and understand equivalence of decimals and vulgar fractions</td>
<td>✓ Extend their understanding of addition and subtraction, and begin to use jottings and efficient written methods to add and subtract with two- and three-digit numbers, including quickly adding multiples of 10 and 100 and reordering to make calculation easier</td>
<td>✓ Know multiplication and division facts for the 2x, 3x, 4x, 5x, 6x, 9x and 10x tables and recognise multiples of 2, 5 and 10</td>
<td>✓ Collect, organise and interpret data to answer questions using:</td>
</tr>
<tr>
<td>✓ Use negative numbers in context</td>
<td>✓ Quickly double and halve numbers in the given range, and understand the relationship between doubling and halving</td>
<td>✓ Begin to do written multiplication and division calculations including division where there is a remainder</td>
<td>- tally charts and frequency tables</td>
</tr>
<tr>
<td>✓ Extend their understanding of addition and subtraction, and begin to use jottings and efficient written methods to add and subtract with two- and three-digit numbers, including quickly adding multiples of 10 and 100 and reordering to make calculation easier</td>
<td>✓ Use the symbols +, -, x and ÷ to record and make sense of number sentences involving all four basic operations</td>
<td>✓ Begin to understand simple ratio and proportion</td>
<td>- pictograms and bar charts</td>
</tr>
<tr>
<td>✓ Quickly double and halve numbers in the given range, and understand the relationship between doubling and halving</td>
<td>✓ Know multiplication and division facts for the 2x, 3x, 4x, 5x, 6x, 9x and 10x tables and recognise multiples of 2, 5 and 10</td>
<td>✓ Understand that area is measured in square units and find the area of shapes on a grid by counting square units</td>
<td>✓ Understand that area is measured in square units and find the area of shapes on a grid by counting square units</td>
</tr>
<tr>
<td>✓ Use the symbols +, -, x and ÷ to record and make sense of number sentences involving all four basic operations</td>
<td>✓ Draw rectangles and measure and calculate their perimeter</td>
<td>✓ Collect, organise and interpret data to answer questions using:</td>
<td>✓ Collect, organise and interpret data to answer questions using:</td>
</tr>
<tr>
<td>✓ Know multiplication and division facts for the 2x, 3x, 4x, 5x, 6x, 9x and 10x tables and recognise multiples of 2, 5 and 10</td>
<td>✓ Give direction to follow a given path</td>
<td>- tally charts and frequency tables</td>
<td>- tally charts and frequency tables</td>
</tr>
<tr>
<td>✓ Begin to do written multiplication and division calculations including division where there is a remainder</td>
<td>✓ Give direction to follow a given path</td>
<td>✓ Choose units to measure time intervals</td>
<td>✓ Choose units to measure time intervals</td>
</tr>
<tr>
<td>✓ Begin to understand simple ratio and proportion</td>
<td>✓ Read time to nearest minute on 12-hour digital and analogue clocks; use am, pm and 12-hour digital notation for times</td>
<td>✓ Read timetables and use a calendar</td>
<td>✓ Read timetables and use a calendar</td>
</tr>
</tbody>
</table>

Stage 4

Nelson International Mathematics
Number

What your child will be doing this year

Your child will continue to count forwards and backwards up to 10 000, counting in groups and comparing and ordering sets of numbers. They will develop their understanding of fractions and mixed numbers (such as $2\frac{1}{2}$) as well as decimal fractions with two places. The focus in calculating will move towards using known facts and mental strategies to develop efficient written methods of adding, subtracting, multiplying and dividing with up to three-digit numbers.

How this topic is taught at this level

Students will learn how to use the number patterns, place value and facts that they already know to help them add, subtract, multiply and divide numbers in a higher number range. They will be encouraged to use number lines and jottings (their own methods of recording their work) to keep track of what they are doing.

Some ideas for supporting learning at this level

Practise times tables. By the end of this year your child need to know the $2\times$, $3\times$, $4\times$, $5\times$, $6\times$, $9\times$ and $10\times$ tables by heart. Help your child to memorise the tables by saying them forwards and backwards. Also ask random times tables questions such as ‘What is 3 times 4?’ or ‘What is 10 times 9?’ When your child is confident with multiplication facts and can recall tables quickly, focus on the related division facts. For example, using the three times table, ask your child how many threes there are in 21, 27, 15, and so on.

Use numbers whenever you take a journey. Find three- or four-digit numbers in the environment. For example, the number 4326 on a number plate.

- Challenge your child to make a calculation with the digits in the number. For example $43 + 26 = 69$, or $432 - 6 = 426$.
- Perform an operation on the number - for example, add 200 to it to get 4526, and ask your child to say what you did to get the new answer.
- Make up facts about the number. For example, it is between 4300 and 4400, it is 4330 when rounded to the nearest ten. It is a multiple of 2.
- Decide on a place to round to (10 or 100) and round all the numbers you can find to that place.
- Play ‘spot the multiple’ using multiples of 2, 3, 4, 5 and 10. Stick to smaller numbers for this.

Use the news. Look at newspaper pages and ask your child to estimate the fraction of the page covered by words and/or pictures. Find numbers in the news and talk about what type of numbers they are (whole number, fractions, decimals or mixed numbers), discuss what the number means in the context. Talk about whether numbers in the news are accurate, estimated or rounded. Find three numbers in the news and arrange them in order from smallest to biggest.
Use dice, dominoes or playing cards. Use the pieces to generate numbers for calculations and number work. For example, roll a dice twice and use the numbers to make a decimal fraction; say whose is greater and whose is smaller or find another decimal in between the ones you have chosen. Draw two cards at random and multiply the values on them to reinforce tables. Use dominoes to make two-digit numbers and add them mentally, increase them by a given amount (100, 1000 or multiples of ten). Use any of the equipment to make a two-digit number, say how much more is needed to get to 100.
Geometry

What your child will be doing this year

This year the children will build on and formalise what they know about 2D and 3D shapes. They will need to use the mathematical names for parts of shapes and identify these on shapes and diagrams of shapes. They will extend their knowledge of symmetry and begin to work more formally with angles. They will continue to use the language of position and direction but will also start to use grids to describe the position of objects.

How this topic is taught at this level

Children will continue to make and draw shapes but they will also focus on recognising shapes and their properties from diagrams and using properties of shapes to classify them. They will build on what they already know to explore angles in more detail and continue to work with position on a grid.

Some ideas for supporting learning at this level

Make and break down boxes. Use cardboard boxes of different shapes and sizes to show children how 3D shapes are built up from a flat sheet of cardboard. Cut the boxes open in different ways, open them out and look at the shapes you can see, count them and talk about how the flat card is folded along the lines to make the box. Have your child fold them up again to form the 3D shape.

Play visual discrimination games. Cut out shapes from magazines or use sets of plastic shapes. Show your child five shapes and let them pick the ones that are identical. Children find it quite difficult to tell whether a triangle is the same as another triangle if they are lying in different positions. Show your child how to put the shapes on top of each other to compare them.

Play memory games using shapes or patterns. Show your child a shape or a simple pattern made from shapes. Let them look at it for a few seconds, then hide or cover it. Ask them to draw the shape or pattern from memory.

Find and discuss symmetrical designs and patterns in the environment. Use fabric patterns, tiling patterns, beadwork, cultural designs and art to find and discuss symmetrical patterns. Examine buildings and say whether or not they are symmetrical when viewed from the front or not. Encourage your child to explain his or her thinking.

Play games on a grid. Make a 10 x 10 block grid. Use numbers and letters, or just numbers to label the rows (across) and the columns (vertically). Use a counter or a small toy. Put it in a block on the grid. Let your child say what block it is in (for example it is in block 2; 3). Move it around and give the new positions. Talk about what you are doing. For example, ‘If I move the counter one block up, where will it be then?’ Let your child guess the position before moving it and then move it to check. Use the grid to make an obstacle course - place items in blocks and then have the child follow/give instructions to move a counter from one position to another following a specific path and avoiding the blocks with obstacles in them. For example, move 3 blocks to the right, go up one, now move three left and go down four to reach your destination.
Measure

What your child will be doing this year

This year your child will continue to measure and compare objects using standard units. They will use a wider range of measuring instruments and marked scales. They will tell time using am and pm times, and will continue to use units of time and use them to measure and calculate time intervals. In addition, children will be introduced to the concepts of perimeter and area.

How this topic is taught at this level

At this level, the students will work with rulers, measuring tapes, scales (kitchen and bathroom) and measuring jugs to measure amounts accurately and read measurements from scales. They will also work with clocks, timetables and calendars to calculate time intervals and to consolidate the relationships between units of time.

Some ideas for supporting learning at this level

Measure everyday items. Continue to let your child measure items at home using whatever instruments you have. Try to stick to metric units, as this is what they need to know at school. For example, use a kitchen scale to measure ingredients for a recipe; use a tape measure or ruler to measure lengths of wood to build a shelf. Record measurements in different ways (record lengths in centimetres, in metres and centimetres, or as decimal amounts in metres). Estimate all measurements before you actually measure.

Do research using measurements. If you can, find the weights of different animals and record them. Order these from biggest to smallest and use them to make comparisons. For example, say things like ‘A cow weighs about 700 kilograms. Is that heavier or lighter than a lion/giraffe/elephant?’.

Work with timetables. Find transport timetables or use television programme times to reinforce work on time intervals. Let your children work out how long a journey will take or how long a programme will be on for. Ask questions such as ‘How long will we have to wait for the bus/train?’, ‘How many minutes till your programme starts?’ Try to stick to timetables or the parts of them that use the 12-hour clock system at this level.

Link sports to maths. Talk about sports your child plays or watches, discuss how long a game/match takes and how it is divided up. Include fractions (for example, if they play for 90 minutes, when will it be half time?). Talk about sports fields and estimate the perimeter of the entire field or parts of it. Ask your child how you could measure and check the perimeter. Estimate the area of the field taken up by the goal area.

Use a square to find the area of different items at home. Use a square tile or cut a square out of card. Pose some problems related to area, such as ‘Which is the bigger area – the top of the kitchen table or the tiled floor in the bathroom?’. Let your child guess first and then use the square to find the area (in squares) of each space. Use the measurements to compare the areas and decide which is larger or smaller. You can do this on smaller areas with a sheet of squared paper or square blocks.
Data

What your child will be doing this year

This year children collect their own data and then sort and organise it to answer a question. They will record information in tables and graphs and sort items using Venn diagrams and special tables called Carroll diagrams. They will also compare graphs showing the same data but using a different scale to see how this affects what the graph looks like.

How this topic is taught at this level

Children will physically count and record data and sort items and arrange them in order to find information or to show results of a simple investigation. They will draw graphs to show their results.

Some ideas for supporting learning at this level

Make graphs and charts at home. Continue to make graphs and charts at home to record things like: how many times you watch TV during the week, how many portions of fruit or vegetables each person eats, how many books each person reads, and so on.

Use tallies to keep track of counts. For example, when you are driving, let your child tally the number of cars of different colours, or the number of trucks that you pass. Count up how many you see using the tallies. Remember your child should make a mark for 1 to 4 items and then score through those four every time he or she reaches five. You can then count the total items in fives. Help your child to organise the data into a simple frequency table like this one:

<table>
<thead>
<tr>
<th>Day</th>
<th>Tally</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You could extend this to include a bar graph activity. Keep a record of, for example, how many trucks you pass in the car each day for a week, and then use the frequency table to draw up a graph with one block per 2, 5, 10 or 20 trucks. If you do this two weeks in a row you can choose a different scale to draw the graphs. This will help children to see for example that using an interval of two will result in longer bars than using an interval of ten.

Collect charts and graphs. There are many examples of charts and graphs in everyday life. Encourage your child to look out for these and, where appropriate, talk about what they mean. Focus on picture and bar graphs at this level.
Draw Venn diagrams to show family data. Draw three overlapping circles and label them with three different characteristics. For example, ‘wears glasses’, ‘has brown hair’, ‘has green eyes’. Let the child place family members (write their names or initials) in the correct places on the diagram. Someone who has all three characteristics will go into the central piece where all the circles overlap. If you don’t have a large enough family, you can use the characters from a TV show to do this activity.
Glossary

A
Analogue clock – a clock that shows the time using hands which point to numbers arranged in a circle
Array – all the items in a set laid out so you can see them all – for example, an array of multiplication sums with the product 24

B
Bar graph – a graph where bars are used to show numbers or measurements
Block graph – a graph where columns are in blocks; each block shows one thing

C
Centimetre (cm) – a unit of length, your thumb is about 1 cm wide
Circle – a round, flat shape
Clockwise – the direction in which the hands move forwards in a circle around the face of an analogue clock; the opposite direction is called anti-clockwise
Cone – a solid shape with a pointed end and flat circular face
Co-ordinate – point on a grid
Cube – a solid shape with all its faces square
Cuboid – a solid shape with six faces; all the faces are rectangles
Cylinder – a solid shape with two circular end faces; a tin is a cylinder

D
Database – a chart containing information arranged in fields
Degree (°) – the unit used for measuring angles and temperature
Digital clock – a clock that shows the time using only numbers
Divide – share equally into groups

E
Estimate – a guess, what you think an answer will be

F
Fraction – a part; one half, one quarter and one third are all fractions
Frequency – how often something occurs

G
Geo-board – board with a grid of nails or pegs for making polygons
Gram (g) – a unit of mass used for light objects

H
Half – when you share things equally into two parts, each part is one half
Hexagon – a flat shape with six sides
Horizontal – a line that goes from one side to the other, parallel to the horizon
Hour – a measure of time: there are 60 minutes in one hour

K
Kilogram (kg) – a unit of mass used for heavy objects
L
Litre (l) – a unit of capacity, how much a container holds

M
Metre (m) – a unit of length used for large measurements
Millimetre (mm) – a unit of length used for small measurements
Minute – a measure of time: there are 60 minutes in one hour
Mixed number – a number containing a whole number and a fraction

N
Negative numbers – numbers less than zero
Net – a flat shape that folds to enclose a 3-D solid

P
Pentagon – a flat shape with five sides
Pictogram – a type of graph where pictures are used to show information
Polygon – a flat shape with straight sides
Prism – a solid shape that is the same all the way through
Protractor – an instrument we use to measure angles
Pyramid – a solid shape with a flat base and faces that meet at a point

Q
Quadrilateral – a flat shape with four sides
Quarter – one of four equal parts of a whole; when you divide something into four equal parts each part is one quarter

R
Rectangle – a four-sided shape with four right-angled corners and opposite sides equal
Reflection – a mirror image or flip
Remainder – the number left over after division
Right angle – a quarter turn, like the corner of this page
Round off – to change a number to a lower place value to make it easier to work with. For example, we can round a number to the nearest ten, 100 or 1000

S
Second – a unit of time: there are 60 seconds in one minute
Sphere – a solid round shape; a ball is a sphere
Square – a four-sided flat shape with all sides equal
Subtract – take away or minus
Symbol – a picture used to represent something on a pictogram
Symmetrical – able to be divided into two identical parts

T
Tally – a small mark used to count one object; every fifth mark is drawn across the previous four tallies
Third – a fraction, one of three equal parts; if you divide something into three equal parts, each part is one third
Triangle – a flat shape with three sides

V
Vertical – a line that goes straight up and down, perpendicular to the horizon