5 Sets

Consider

Thirty students wrote down what kind of transport they used one day to get to school.

- 15 used a bus.
- 18 used a car.
- 6 used both a bus and a car.

How can you find the number that used neither a bus nor a car?

You should be able to solve this problem after you have worked through this chapter.

Class discussion

Thirty students were asked if they had a pencil with them. They were then asked if they had a pen with them.

- 25 students said they had a pencil.
- 21 students said they had a pen.

These two numbers add up to more than the number of students in the class. Why do you think this is the case?

Set notation

A set is a clearly defined collection of things that have something in common, for example, a set of drawing instruments, a set of books.

Things that belong to a set are called members or elements. These members are usually written down separated by commas and enclosed in curly brackets.

For example, the set of prime numbers between 0 and 10 can be written as \{2, 3, 5, 7\}.

We do not have to list all the members of a set when we can use words to describe them. For example, instead of \{1, 2, 3, 4, 5, ..., 19, 20\} we can write \{whole numbers from 1 to 20 inclusive\}.

Exercise 5a

Worked example

- Write \{the prime factors of 30\} as a list of members.

\[
30 = 2 \times 15 = 2 \times 3 \times 5
\]

Therefore \{the prime factors of 30\} = \{2, 3, 5\}
Write each of the following sets as a list of members.
1. {the days of the week}
2. {the even numbers between 1 and 11}
3. {the prime numbers between 10 and 20}
4. {the multiples of 3 between 1 and 20}
5. {the last four letters of the Roman alphabet}
6. {multiples of 5 between 20 and 50 inclusive}
7. {the prime factors of 70}
8. {the square numbers between 1 and 100 inclusive}
9. {the triangular numbers between 1 and 50 inclusive}
10. {the different factors of 12}

Finite and infinite sets
When we need to refer to a set several times, we can use a capital letter to label that set. For example

\[A = \{\text{months of the year beginning with J}\} \]

or
\[A = \{\text{January, June, July}\} \]

In many cases it is not possible to list all the members of a set. For example, if
\[N = \{\text{positive whole numbers}\} \]
we can write
\[N = \{1, 2, 3, 4, 5, \ldots\} \]

where the dots show that the list continues indefinitely.
\[N \] is an example of an infinite set, whereas \(A \) is an example of a finite set.

Exercise 5b

State whether the following sets are finite or infinite.
1. \(A = \{\text{vowels of the Roman alphabet}\} \)
2. \(B = \{\text{the factors of 30}\} \)
3. \(C = \{\text{even numbers}\} \)
4. \(D = \{\text{even numbers between 3 and 9}\} \)
5. \(E = \{\text{students taking violin lessons}\} \)
6. \(F = \{\text{odd numbers}\} \)
7. \(G = \{\text{grains of sand on the Earth}\} \)
8. \(H = \{\text{multiples of 3}\} \)
9. \(I = \{\text{different shapes of triangle}\} \)
10. \(J = \{\text{different languages spoken in the world}\} \)
Universal sets
Consider the set \(X = \{ \text{whole numbers less than 16} \} \).
Now consider the sets \(A \) and \(B \) whose members are in \(X \) where
\[
A = \{ \text{prime numbers less than 16} \} = \{2, 3, 5, 7, 11, 13\}
\]
and
\[
B = \{ \text{multiples of 5 less than 16} \} = \{5, 10, 15\}
\]
The set \(X \) is called a **universal set** for the sets \(A \) and \(B \). It is a set that contains all the members of the sets \(A \) and \(B \), together with other members that are not in \(A \) or in \(B \). The universal set could also be any set of whole numbers that includes the members of \(A \) and \(B \), for example \(\{ \text{whole numbers less than 20} \} \). The universal set is usually labelled \(U \).

Exercise 5c

Worked example

Suggest a universal set for the sets
\[
A = \{ \text{pupils in my class having piano lessons} \}
\]
\[
B = \{ \text{pupils in my class having guitar lessons} \}
\]
\[
U = \{ \text{all the pupils in my class} \}
\]
(The universal set could be any other set that includes the pupils in \(A \) and \(B \).)

Suggest a universal set for
1 \(\{2, 4, 6, 8, 10\} \) and \(\{4, 8, 12\} \)
2 \(\{1, 3, 5, 7, 11\} \) and \(\{3, 6, 9, 12, 15\} \)
3 \{knives\} and \{forks\}
4 \{odd whole numbers\} and \{multiples of 3\}
5 \{students in my class who play football\} and \{students in my class who play tennis\}
6 \{cups and saucers\} and \{plates\}

Venn diagrams
Venn diagrams are a way of representing sets. A **Venn diagram** consists of a rectangle with circles inside, representing sets.
The rectangle represents a universal set. The members of a universal set are all the members of the given sets together with possible other members.
For example, if \(A = \{ \text{the odd numbers between 0 and 10} \} = \{1, 3, 5, 7, 9\} \) and \(B = \{ \text{multiples of 3 between 1 and 20} \} = \{3, 6, 9, 12, 15, 18\} \), the universal set could be \(\{ \text{all whole numbers between 1 and 20 inclusive} \} \).
Draw Venn diagrams to show the union of the following sets.

1. \(P = \{a, b, c, d, e\}, \quad Q = \{a, e, i, o, u\} \)
2. \(X = \{2, 4, 6, 8, 10\}, \quad Y = \{4, 8, 12, 16\} \)
3. \(A = \{\text{letters in the word ‘Bernado’}\}, \quad B = \{\text{letters in the word ‘Bashira’}\} \)
4. \(F = \{4, 8, 12, 16, 20\}, \quad G = \{3, 6, 9, 12, 15\} \)
5. \(P = \{2, 3, 5\}, \quad Q = \{2, 3, 7\} \)
6. \(X = \{\text{prime numbers less than 10}\}, \quad Y = \{\text{even numbers less than 10}\} \)
7. \(F = \{\text{square numbers less than 50}\}, \quad G = \{\text{triangular numbers less than 50}\} \)
8. \(M = \{\text{square numbers less than 100}\}, \quad N = \{\text{cube numbers less than 100}\} \)
9. \(A = \{\text{capital letters in the alphabet that can be written using only straight lines}\} \),
\[B = \{\text{capital letters in the alphabet that cannot be written using only straight lines}\} \]

10. \(P = \{\text{letters in the word ALGEBRA}\} \),
\[Q = \{\text{letters in the word GEOMETRY}\} \]

Intersection of sets

The **intersection of two sets** \(A \) and \(B \) is the set of members that is in both \(A \) and \(B \).

Consider again the sets \(A = \{1, 3, 5, 7, 9\} \) and \(B = \{3, 6, 9, 12, 15, 18\} \)

From the Venn diagram we can see that the members \{3, 9\} are in both \(A \) and \(B \).

The intersection of \(A \) and \(B \) is written as \(A \cap B \).

Therefore \(A \cap B = \{3, 9\} \)

Exercise 5e

Use the diagrams that you drew for Exercise 5D, questions 1 to 6 to write down the intersection of each pair of sets.

7. Draw a Venn diagram to illustrate the sets \(A = \{2, 4, 6, 8, 10, 12\} \) and \(B = \{3, 6, 9, 12\} \) with \(U = \{\text{whole numbers from 1 to 12 inclusive}\} \).
 Hence write down the set of numbers that are in \(U \) but not in either \(A \) or \(B \).

8. Draw a Venn diagram to illustrate the sets \(A = \{\text{factors of 6}\} \) and \(B = \{\text{factors of 10}\} \) with \(U = \{\text{whole numbers from 1 to 10 inclusive}\} \).
 Hence write down the set of numbers that are in \(U \) but not in either \(A \) or \(B \).

9. Given \(F = \{\text{square numbers less than 50}\} \), \(G = \{\text{triangular numbers less than 50}\} \) and \(U = \{\text{whole numbers from 1 to 50 inclusive}\} \)
 a) list the members of \(F \cap G \)
 b) find the number of members of the set that are not members of \(F \) or \(G \).

10. Given \(M = \{\text{square numbers less than 100}\} \), \(N = \{\text{cube numbers less than 100}\} \) and \(U = \{\text{whole numbers from 1 to 100 inclusive}\} \)
 a) list the members of \(M \cap N \)
 b) find the number of members of the set that are not members of \(M \) or \(N \).
Consider again

Thirty students wrote down what kind of transport they used one day to get to school.
- 15 used a bus. 18 used a car.
- 6 used both a bus and a car.

Now can you find the number that used neither a bus nor a car?

If you need some help, go to the STP website.

Investigation

Consider the following sets X and Y.

$X = \{0, 2, 4, 6, 8, 10, \ldots \}$, $Y = \{1, 3, 5, 7, 9, 11, \ldots \}$

a. Describe X and Y in words.

b. Write down the next three numbers in X. Write down the next three numbers in Y.

c. Choose two numbers from X and find their sum. Is this sum a member of X? Is this always true?

d. Choose two numbers from Y and find their sum. Which set contains this sum? Is this always true?

e. What can you say about two numbers so that their sum is in Y?