Contents

Chapter 1 Patterns to infinity 2
1.1 From limits of sequences to limits of functions 3
1.2 Squeeze theorem and the algebra of limits of convergent sequences 7
1.3 Divergent sequences: indeterminate forms and evaluation of limits 10
1.4 From limits of sequences to limits of functions 13

Chapter 2 Smoothness in mathematics 22
2.1 Continuity and differentiability on an interval 24
2.2 Theorems about continuous functions 28
2.3 Differentiable functions: Rolle's Theorem and Mean Value Theorem 33
2.4 Limits at a point, indeterminate forms, and L'Hopital's rule 42
2.5 What are smooth graphs of functions? 49
2.6 Limits of functions and limits of sequences 50

Chapter 3 Modeling dynamic phenomena 54
3.1 Classifications of differential equations and their solutions 56
3.2 Differential Equations with separated variables 61
3.3 Separable variables differential equations and graphs of their solutions 63
3.4 Modeling of growth and decay phenomena 69
3.5 First order exact equations and integrating factors 73
3.6 Homogeneous differential equations and substitution methods 80
3.7 Euler Method for first order differential equations 85

Chapter 4 The finite in the infinite 96
4.1 Series and convergence 98
4.2 Introduction to convergence tests for series 104
4.3 Improper Integrals 110
4.4 Integral test for convergence 112
4.5 The p-series test 114
4.6 Comparison test for convergence 115
4.7 Limit comparison test for convergence 118
4.8 Ratio test for convergence 119
4.9 Absolute convergence of series 120
4.10 Conditional convergence of series 122

Chapter 5 Everything polynomic 130
5.1 Representing Functions by Power Series 132
5.2 Representing Power Series as Functions 135
5.3 Representing Functions by Power Series 138
5.4 Taylor Polynomials 143
5.5 Taylor and Maclaurin Series 146
5.6 Using Taylor Series to approximate functions 156
5.7 Useful applications of power series 161

Answers 168

Index 185
1.1 From limits of sequences to limits of functions

Infinity is a concept that has challenged mathematicians and scientists for centuries. Throughout this time the concept of infinity was sometimes denied and sometimes accepted by mathematicians, to the point that it became one of main issues in the history of Mathematics. In the last 150 years, great advances were made: first with the axiomatization of set theory; and then with the work of philosopher Bertrand Russell and his collection of paradoxes. At the climax of all discussions was the work of Georg Cantor on the classification of infinities.

But do infinities really exist? After all, how many types of infinity are there? Does it make sense to compare them and operate with them?

In this chapter we will explore the concept of infinity, starting with an intuitive approach and looking at familiar number patterns: sequences. We will then formalise the idea of ‘the pattern that goes on forever’ and formally define the limit of a sequence. This may help you to better understand the theorems about sequences, although formal treatment of limits of sequences will not be examined. For this reason, all proofs of results have been omitted.

At the end of the chapter we will explore the connections between limits of sequences and limits of functions introduced in the core course. We will also establish criteria for the existence of the limit of a function at a point.
Consider the following numerical sequences:

\[a_n = 1, 2, 4, 8, 16, \ldots, 2^n, \ldots \]
\[b_n = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots \]
\[c_n = -1, 1, -1, 1, -1, 1, \ldots, (-1)^n, \ldots \]

What is happening to the terms of these sequences as \(n \) increases?
Do they approach any real number as \(n \to +\infty \)?

If we graph the sequences \(\{a_n\}, \{b_n\}, \) and \(\{c_n\}, \) we can observe their behaviour as \(n \) increases, and notice that:

- \(\lim_{n \to \infty} a_n = +\infty \) which means that \(\{a_n\} \) diverges;
- \(\lim_{n \to \infty} b_n = 0 \) which means that \(\{b_n\} \) converges to 0;
- \(\lim_{n \to \infty} c_n \) does not exist (it oscillates from 1 to \(-1\)) which means that \(\{c_n\} \) diverges.

The following investigation will help you to better understand what ‘convergent’ means.

Investigation 1

1. Use technology to graph the sequence defined by \(u_n = \frac{n+1}{2n+1} \).
2. Hence explain why \(\lim_{n \to \infty} u_n = \frac{1}{2} \).
3. Find the minimum value of \(m \) such that \(n \geq m \Rightarrow |u_n - \frac{1}{2}| < 0.1 \) (i.e. find the smallest integer \(n \) for which the difference between the value \(u_n \) and \(\frac{1}{2} \) is less than 0.1).
4. Consider the positive small quantities \(\varepsilon = 0.01, 0.001, \) and \(0.0001 \). In each case find the minimum value of \(m \) such that \(n \geq m \Rightarrow |u_n - 0.4| < \varepsilon \).
5. Decide whether or not it is possible to find the order \(m \) such that \(n \geq m \Rightarrow |u_n - 0.4| < 0.1 \). Give reasons for your answer.

Consider now the sequence defined by \(v_n = \left(\frac{-1}{3}\right)^n \).
6. Explain why \(\lim_{n \to \infty} v_n = 0 \).
7. Consider the positive small quantities \(\varepsilon = 0.01, 0.001, \) and \(0.0001 \). In each case find the minimum value of \(m \) such that \(n \geq m \Rightarrow |v_n| < \varepsilon \).
8. Explain the meaning of \(\lim_{n \to \infty} u_n = L \) in terms of the value of \(|u_n - L| \).
9. Explore further cases of your choice.

You may want to use sequences defined by expressions involving arithmetic and geometric sequences studied as part of the core course.
Definition: Convergent sequences

\{u_n\} is a convergent sequence with \(\lim_{n \to \infty} u_n = L\) if and only if for any \(\varepsilon > 0\) there exists a least order \(m \in \mathbb{Z}^+\) such that, for all \(n \geq m\) \(\Rightarrow |u_n - L| < \varepsilon\).

This definition gives an algebraic criterion to test whether or not a given number \(L\) is the limit of a sequence. However, to apply this test, you must first decide about the value of \(L\).

Example 1

Show that the sequence defined by \(u_n = \frac{3n-1}{n+1}\) is convergent.

Graph the sequence and observe its behavior as \(n\) increases.

Find a simplified expression for \(|u_n - 3|\)

The value of \(m\) is the least positive integer greater than \(\frac{4}{\varepsilon} - 1\)

Use the definition to show that \(\lim_{n \to \infty} u_n = 3\).

Note that this definitions tells you that from the order \(m\) onwards, all the terms of the sequence lie within the interval \([L - \varepsilon, L + \varepsilon]\).

This means that the sequence can have exactly one limit, \(L\).

Useful theorems about subsequences of convergent and divergent sequences:

- If \(\{b_n\} \subseteq \{a_n\}\) is a subsequence of a convergent sequence \(\{a_n\}\), then \(\{b_n\}\) is also a convergent sequence and \(\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n\)

- If \(\{b_n\} \subseteq \{a_n\}\) and \(\{c_n\} \subseteq \{a_n\}\) are subsequences of a sequence \(\{a_n\}\) and \(\lim_{n \to \infty} b_n \neq \lim_{n \to \infty} c_n\) then \(\{a_n\}\) is not convergent (i.e. \(\{a_n\}\) is a divergent sequence).
The following examples show you how to use subsequences of a given sequence to show that the sequence diverges.

Example 2

Show that the sequence defined by \(a_n = (-1)^n \cdot 2 \) does not converge.

\[
\begin{align*}
a_n &: -2, 2, -2, 2, \ldots \\
b_n &= a_{2n} = 2 \rightarrow 2 \\
c_n &= a_{2n-1} = -2 \rightarrow -2 \\
\therefore \lim_{n \to \infty} b_n \neq \lim_{n \to \infty} c_n \text{ then } \{a_n\} \text{ is not convergent.}
\end{align*}
\]

Calculate a few terms of the sequence and observe the pattern.

\(\{b_n\} \) and \(\{c_n\} \) are the subsequences of even order terms, and odd order terms, respectively.

If the sequence \(\{a_n\} \) was convergent all its subsequences would have the same limit.

Example 3

Show that the sequence defined by \(u_n : \begin{cases}
 u_1 = 3 \\
 u_{n+1} = -u_n
\end{cases} \), \(n \in \mathbb{Z}^+ \) is divergent.

Let \(\{v_n\} \) be the subsequence of \(\{u_n\} \) of the terms of even order, i.e. \(v_n = u_{2n} = -3 \) (\(m \) is any positive integer), and let \(\{w_n\} \) be the subsequence of \(\{u_n\} \) of the terms of odd order, i.e. \(w_n = u_{2n-1} = 3 \).

Since \(\lim_{n \to \infty} v_n = -3 \neq 3 = \lim_{n \to \infty} w_n \) the sequence \(\{u_n\} \) cannot converge.

\(\{u_n\} \) and \(\{v_n\} \) are the subsequences of even order terms, and odd order terms, respectively.

3, -3, 3, -3, ...

If the sequence \(\{u_n\} \) was convergent all its subsequences would have the same limit.

We can also use subsequences to determine the limit of a convergent sequence defined recursively as we will see later in this chapter.

Exercise 1A

1. Consider the sequence defined by \(u_n = \frac{n+3}{2n+1} \). Find the least value of \(m \in \mathbb{Z}^+ \) such that \(n \geq m \implies |u_n - \frac{1}{2}| < 0.001 \).

2. Consider the sequence defined by \(v_n = \frac{n+1}{3n-1} \).

 a. Graph the sequence and, if possible, state its limit.

 b. Find the least value of \(m \in \mathbb{Z}^+ \) such that \(n > m \implies |v_n - \frac{1}{3}| < 0.001 \).

3. Consider the sequence defined by \(u_n = \frac{4^n - 3}{4^n} \).

 a. Graph the sequence and, if possible, state its limit.

 b. Find the least value of \(m \in \mathbb{Z}^+ \) such that \(n > m \implies |u_n - 1| < 0.0005 \).