Chapter 9 – Answers to questions (for in-chapter questions)

1 a Yes, b Yes, c White
 d Sodium reacts very vigorously – melts to a silvery globule, skates over the water surface producing H₂ and an alkaline solution of NaOH.

Potassium reacts violently, melts to a silvery globule which catches fire producing a lilac flame – forming H₂ and an alkaline solution of KOH.

The reaction of Na and K are similar with similar products.

\[2\text{Na}(s) + 2\text{H}_2\text{O}(l) \rightarrow 2\text{NaOH}(aq) + \text{H}_2(g) \]
\[2\text{K}(s) + 2\text{H}_2\text{O}(l) \rightarrow 2\text{KOH}(aq) + \text{H}_2(g) \]

 e Formulae of compounds are similar with both Na and K in oxidation state +1 in all their compounds.

2 Average Rel. At. Mass of Li and K = \frac{6.9 + 39.1}{2} = 23.0

 Rel. At. Mass Na = 23.0.

 They are identical to one decimal place.

3 a Because, starting at any one element, the eighth element along is a kind of repetition, like the eighth note in an octave of music.
 b Li, Na and K or Be, Mg and Ca
 c S and Fe

4 a Scandium, Gallium, Germanium, Technetium.
 b Because none of them had been discovered when he published his table in 1869.

5 Compared to Na and Ca, transition metals have:
 a higher melting points and boiling points, b higher densities, c less vigorous reactions with water, d more than one oxidation number in their compounds, e coloured (non white) solid compounds and coloured aqueous solutions.

6 a below and left of the thick steps in Figure 9.6.
 b touching the thick steps in Figure 9.6.
 c Na to Ar, d Group II, e F, f Cl₂ (possibly Br₂ or I₂),
 g Fe, Co or Ni, h Ag, Au and Pt.

7 a B, C, Si – giant covalent (giant molecular) structures.
 b From Na through Mg to Al, the number of outermost shell electrons (i.e. delocalised electrons) per atom increases from 1 to 2 to 3. These electrons contribute to an electric current through the metal and so electrical conductivity increases from Na \rightarrow Mg \rightarrow Al.
8 Because each successive element has one more full shell of electrons.

9 a Those in the outermost shell.
 b It will have lost electrons from the outermost shell.
 c Because it has lost electrons from the outermost shell.
 d Because Na\(^+\), Mg\(^{2+}\) and Al\(^{3+}\) all have the same electronic structure of 2, 8, but from Na\(^+\) to Al\(^{3+}\) there is an increased positive nuclear charge which pulls the electrons closer to the nucleus.

10 a Na, b Cl, c P, d Al

11 a Group I b The ratio of I.E.s for second to first, third to second and fourth to third are approx. 5.5 : 1.3 : 1.3. This suggests that the first electron is very easy to remove relative to the second, the third is only a little more difficult than the second and the fourth only a little more difficult than the third.

12 a 4Na(s) + O\(_2\)(g) \rightarrow 2(Na\(^+\))\(_2\)O\(^{2-}\)(s)
 b i Na atoms have lost electrons (been oxidised) to form Na\(^+\) ions.
 O atoms have gained electrons (been reduced) to form O\(^{2-}\) ions.
 ii The oxidation number of Na has increased from O to +1 in Na\(^+\) ions.
 The oxidation number of O has decreased from 0 to –2 in O\(^{2-}\) ions.
 c

13 a

14 a Li +1, Be +2, B +3, C +4, N +3, O –2, F –1
 b Oxidation numbers rise from +1 in LiCl to +4 in CCl\(_4\) and then fall to –1 in ClF.
 c They are dictated by the number of electrons in the outer shell of the elements in period 2.
15 a They change from solids to liquids and finally to a gas.
 b They fall from high values in NaCl and MgCl₂ to an intermediate value in Al₂Cl₆ and then to low values.
 c Very good for NaCl and MgCl₂, very poor for Al₂Cl₆ and nil for the chlorides of Si, P and S.

16 Si and P.

17 a \(\text{Na}_2\text{O(s)} + \text{H}_2\text{O(l)} \rightarrow 2\text{NaOH(aq)} \)
 \(\text{MgO(s)} + \text{H}_2\text{O(l)} \rightleftharpoons \text{Mg(OH)_2(aq)} \)
 \(\text{P}_4\text{O}_{10(s)} + 6\text{H}_2\text{O(l)} \rightarrow 4\text{H}_3\text{PO}_4(aq) \)
 \(\text{SO}_3(g) + \text{H}_2\text{O(l)} \rightarrow \text{H}_2\text{SO}_4(aq) \)
 \(\text{Cl}_2\text{O}_7(l) + \text{H}_2\text{O(l)} \rightarrow 2\text{HClO}_4(aq) \)
 b The oxides change from strongly basic (Na₂O) through basic (MgO), then amphoteric (Al₂O₃) and weakly acidic (SiO₂) to strongly acidic (P₄O₁₀, SO₃, Cl₂O₇).

18 Al and Si