Chapter 18 – Answers to end of chapter questions

1 a B, C and D
 b A and E
 c d A = 3-methylpentan-2-one; B = pentanal
 d B, C and D
 e A
 f A and E

2 Both groups are unsaturated and undergo addition reactions, e.g. with H₂ in the presence of a nickel catalyst. Alkenes, however, react with electrophiles, while the carbonyl group is attacked by nucleophiles.

\[
\text{Alkene} \quad \text{Carbonyl} \\
\begin{array}{c}
\text{CH₃CCH₂} + \text{NH₂OH} \\
\text{CH₃C} - \text{N} – \text{OH} \\
\text{CH₃} - \text{C} - \text{N} – \text{OH} \\
\text{CH₃} + \text{H₂O}
\end{array}
\]

In the case of the carbonyl group, some of the addition products undergo further reaction, in condensation reactions.

The carbonyls also undergo a greater variety of reactions: oxidation to acids (in the case of aldehydes) and the iodoform reaction. These arise as a result of the effect of the carbonyl group on adjacent atoms.

3 a The π-electrons occupy the vacant d orbitals in Pd²⁺.
 b The π-electrons are no longer available, and their removal makes the ethene positively charged.
 c Yes. Propene.
4 a \(\text{CH}_3\text{CH(OH)CH}_2\text{CH}_3 \)

 b \(\begin{aligned} \text{C}_6\text{H}_5\text{C} & \xrightarrow{\text{NH}_2\text{NH}} \text{DNP} \\
 \text{CH}_3 & \end{aligned} \)

 c \(\text{CH}_3\text{CH.C(OH)(CN)CH}_2\text{CH}_3 \)

 d \(\text{CH}_3\text{CCl}_2\text{CHO} \)

5 A \(\text{CH}_3\text{CH.CH.CH}_2\text{CHO} \)

 B \(\begin{aligned} \text{CH}_3\text{CH} & \xrightarrow{\text{CHO}} \\
 \text{CH}_3 & \end{aligned} \)

 C \(\text{CH}_3\text{CH}_2\text{COCH}_3 \)

A and B react with Tollens’ reagent, Fehling’s solution or other oxidising agents. To
distinguish between them, make derivatives (with 2,4-dinitrophenylhydrazine) and
measure the melting points.

C does not react with oxidising agents.

6 a \(\text{A} = \text{OHCCH}_2\text{CH.CH}_2\text{CHO} \)

 B =

 \(\begin{aligned} \text{HO} & \\
 \text{CH} & \xrightarrow{\text{CH}_2\text{CH}_2\text{CH} \xrightarrow{\text{OH}} \\
 \text{NC} & \end{aligned} \)

 C = \text{HOOCCH}_2\text{CH.COOH} \)

A to B Nucleophilic addition: \(\text{CN} \) attacks carbonyl groups to give addition product
A to C Oxidation of aldehyde to acid

Number of moles \(\text{NaOH} \) added \(\frac{16.9}{1000} \times 1.0 = 0.0169 \)

Number of moles \(\text{C} \) that this reacts with \(\frac{1}{118} = 0.008474 \)

\(\therefore \) they react in ratio 2 moles \(\text{NaOH} \) to 1 mole \(\text{C} \) so \(\text{C} \) has
2 —COOH groups.
b C : H : O
5.36 : 7.11 : 1.7875
3 : 4 : 1
so empirical formula = C₃H₄O

\[M_r = 56 \implies \text{molecular formula} = C_3H_4O \]

number of moles X = \(\frac{0.1}{56} = 0.0178 \)

number of moles H₂ = \(\frac{80}{22400} = 0.00357 \)

\[\therefore 1 \text{ mole } X \text{ reacts with } 2 \text{ moles } H_2; X \text{ has 2 double bonds.} \]

X is \[CH_2=CH-C\underset{O}{\overset{0}{\backslash}}H \]

with Fehling’s solution \[CH_2=CH-C\overset{0}{\overset{0}{\backslash}}O \text{ is formed (oxidation)} \]

with H₂ \[CH.CH.CH.OH \text{ is formed (reduction)} \]

7 a The —OH groups can both be oxidised to an aldehyde or an acid:

CH₂=CHO \hspace{1cm} CHO—CHO \hspace{1cm} CHO—COH

<table>
<thead>
<tr>
<th>CH₂—COOH</th>
<th>COOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂—COOH</td>
<td>COOH</td>
</tr>
<tr>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td></td>
</tr>
</tbody>
</table>

b The C = O group makes the H atoms on the adjacent C atom slightly acidic:

\[CH₂CHO + OH ⇌ CH₂CHO + H₂O \]

This ion removes D⁺ from D₂O

\[CH₂CHO + D₂O ⇌ CH₂DCHO + OD \]

This continues until all three H atoms have been replaced

c The Cl atoms are electron-withdrawing, and make the C atom more susceptible to attack by nucleophiles.

\[\end{align*} \]
8 a CH₃CH₂OH
b CH₃CH(OH)CH₃
c CH₃C(OH)(CH₃)CH₃
d CH₃COOH

9 a CH₃CH₂CHO propanal
b 3000 C—H 1700 C = O
c \[
\begin{array}{c}
CH₃CH₂CHO \\
1.2 2.5 9.8
\end{array}
\]