Number and algebra 1

Answers

Skills check

1 a \(y = 3x^2 (x - 1) \)
\(y = 3(-0.1)^2 (-0.1 - 1) \)
\(y = -0.033 \)
b \(y = \frac{(x-1)^2}{x} \)
\(y = \frac{(-0.1-1)^2}{-0.1} \)
\(y = -12.1 \)
c \(y = (1-x)(2x+1) \)
\(y = (1-(-0.1))(2\times-0.1+1) \)
\(y = 0.88 \)

2 a \(3x - 7 = 14 \)
\(3x = 14 + 7 \)
\(x = \frac{21}{3} \)
\(x = 7 \)
b \(2(x-6) = 4 \)
\(x - 6 = \frac{4}{2} \)
\(x = 2 + 6 \)
\(x = 8 \)
c \(\frac{1}{2}(1-x) = 0 \)
\(1-x = 0 \)
\(x = 1 \)
d \(x \cdot x = 16 \)
\(x = 4 \) or \(x = -4 \)

2 a \(4x + 2 = 0 \)
\(4x = -2 \)
\(x = \frac{-2}{4} \) (or \(x = -0.5 \))
b It is not an integer.

2 a \(x \cdot x = 4 \)
\(x = 2 \) or \(x = -2 \)
b Both are integers.

3 a \(\frac{a-b}{a+b} = \frac{-2-4}{-2+4} = \frac{-6}{2} = -3 \)
b i It is an integer.
ii It is not an integer.

Exercise 1B

1 a \(4x + 2 = 0 \)
\(4x = -2 \)
\(x = \frac{-2}{4} \)

Exercise 1C

1 Look for the decimal expansion of each of the fractions
\(\frac{2}{3} = 0.66666... \) Therefore the decimal expansion of this fraction recurs.
\(\frac{-5}{4} = -1.25 \) Therefore the decimal expansion of this fraction is finite.
\[
\frac{2}{9} = 0.22222\ldots \text{ Therefore the decimal expansion of this fraction recurs.}
\]

\[
\frac{4}{7} = 0.5714285714\ldots \text{ Therefore the decimal expansion of this fraction recurs.}
\]

\[
\frac{-11}{5} = -2.2. \text{ Therefore the decimal expansion of this fraction is finite.}
\]

\[
\frac{2}{a} \quad a = 0.5
\]

\[
\frac{a}{2} = 0.5555\ldots
\]

\[
10a = 5.5555\ldots
\]

\[
a = 0.5
\]

\[
\frac{b}{10} = 1.8
\]

\[
b = 1.8888
\]

\[
10b = 18.8888\ldots
\]

\[
b = 1.8
\]

\[
\frac{5}{9} + \frac{17}{9} = \frac{22}{9}
\]

\[
3 \ a \quad \text{It could be 0.8; 0.5; 2.1; 3.08; etc}
\]

\[
b \quad \text{It could be} \quad 0.12; 0.5; 1.24; 1.02; \text{etc}
\]

\[
c \quad \text{It could be} \quad 3.4578; 0.0002; 1.0023
\]

Exercise 1D

1. either work out the arithmetic mean of these numbers as shown in the book or look for their decimal expansion.

 The numbers are 2 and \(\frac{9}{4} \)
 Therefore 2 and 2.25
 Numbers in between may be for example 2.1; 2.2; 2.23

2. \(\sqrt{2(y-x)} \) when \(y = 3 \) and \(x = -\frac{1}{8} \)
 \[
 \sqrt{2 \left(3 - \left(-\frac{1}{8}\right)\right)} = \frac{5}{2} \text{ (or 2.5)}
 \]
 \[
b = \frac{5}{2} \text{ is a rational number}
 \]

3. a The numbers are \(\frac{9}{5} \) and \(\frac{11}{6} \)
 Therefore 1.8 and 1.83
 Numbers in between may be for example 1.81; 1.82; 1.83.

 b i The numbers are \(\frac{28}{13} \) and \(-2 \)
 Therefore \(-2.15384\ldots \) and \(-2 \)
 Numbers in between may be for example \(-2.14; -2.12; -2.1 \)
 ii infinite

 Exercise 1E

1. a It is a right angled triangle.
 \(h^2 = 2^2 + 1.5^2 \)
 \(h^2 = 6.25 \)
 \(h = 2.5 \text{ cm} \)

 b \(h \) is rational.

2. a \(r = \frac{10}{2} = 5 \text{ cm} \)
 \(A = \pi \times 5^2 \)
 \(A = 25\pi \text{ cm}^2 \)

 b \(A \) is irrational.

Exercise 1F

1. a i \(0.5 \leq \frac{x}{2} \leq 1.5 \)
 multiply by 2
 \(2 \times 0.5 < 2 \times \frac{x}{2} \leq 2 \times 1.5 \)
 \(1 < x \leq 3 \)

 ii make \(x \) the subject of the inequality
 \(3 - x \geq 1 \)
 \(3 \geq 1 + x \)
 \(2 \geq x \)

 b i \(1 \)
 ii \(3 \)
 iii \(2 \)

 c i \(q = 1.5 \) is solution as \(1 < 1.5 \leq 3 \)
 \(t = \sqrt{5} \) is solution as \(1 < \sqrt{5} \leq 3 \)

 ii \(q = 1.5 \) is solution as \(2 \geq 1.5 \).
 \(t = \sqrt{5} \) is not solution as the inequality \(2 \geq \sqrt{5} \) is not true.

2. a i \(2x + 1 > -1 \)
 \(x > \frac{-2}{2} \)
 \(x > -1 \)

 ii \(4 \leq x + 1 \leq 8 \)
 \(4 - 1 \leq x + 1 - 1 \leq 8 - 1 \)
 \(3 \leq x \leq 7 \)

 iii \(2 - x > -1 \)
 \(3 > x \)

 b i \(-1 \)
 ii \(3 \)
 iii \(3 \)

 c substitute each of these numbers in the inequalities

<table>
<thead>
<tr>
<th>(p)</th>
<th>(2x + 1 > -1)</th>
<th>(4 \leq x + 1 \leq 8)</th>
<th>(2 - x > -1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{2}{3})</td>
<td>(\sqrt{\checkmark})</td>
<td>(\sqrt{\checkmark})</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>(\sqrt{10})</td>
<td>(\sqrt{\checkmark})</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>(2\pi)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
</tr>
</tbody>
</table>
Exercise 1G
1 i 358.4 = 358 to the nearest unit
 ii 24.5 = 25 to the nearest unit
 iii 108.9 = 109 to the nearest unit
 iv 10016.01 = 10016 to the nearest unit
2 i 246.25 = 250 correct to the nearest 10
 ii 109 = 110 correct to the nearest 10
 iii 1015.03 = 1020 correct to the nearest 10
 iv 269 = 270 correct to the nearest 10
3 i 140 = 100 correct to the nearest 100.
 ii 150 = 200 correct to the nearest 100.
 iii 1240 = 1200 correct to the nearest 100.
 iv 3062 = 3100 correct to the nearest 100.
4 i 105 607 = 106 000 correct to the nearest 1000.
 ii 1500 = 2000 correct to the nearest 1000.
 iii 9640 = 10 000 correct to the nearest 1000.
 iv 952 = 1000 correct to the nearest 1000.

Any x where $150 \leq x < 250$

Any x where $2500 \leq x < 3500$

Any x where $5.5 \leq x < 6.5$

Exercise 1H
1 i $45.67 = 45.7$ correct to 1 d.p.
 ii $301.065 = 301.1$ correct to 1 d.p.
 iii $2.401 = 2.4$ correct to 1 d.p.
 iv $0.09 = 0.1$ correct to 1 d.p.
2 i $0.0047 = 0.00$ correct to 2 d.p.
 ii $201.305 = 201.31$ correct to 2 d.p.
3 i $10.0485 = 10.049$ correct to the nearest thousandth.
 ii $3.9002 = 3.900$ correct to the nearest thousandth.
 iii $201.7805 = 201.781$ correct to the nearest thousandth.
 iv $0.00841 = 0.008$ correct to the nearest thousandth.
4 $\frac{\sqrt{1.8}}{3.04 \times 0.012^2} = 3064.786153$.
 i 3064.8 (1 d.p.)
 ii 3064.79 (2 d.p.)
 iii 3064.786 (3 d.p.)
 iv 3100 correct to the nearest 100
 v 3000 correct to the nearest 1000
5 $\left(\frac{p + q}{p + q}\right)^3 = 15.6025$
 i 15.60 (2 d.p.)
 ii 15.603 (3 d.p.)
 iii 16 correct to the nearest unit
 iv 20 correct to the nearest 10
6 Any x where $2.365 \leq x < 2.375$
7 Any x where $4.05 \leq x < 4.15$

Exercise 1I
1 i 106 has 3 significant figures as all non-zero digits are significant and zeros between non-zero digits are significant.
 ii 200 has 1 significant figure as trailing zeros in a whole number are not significant.
 iii 0.02 has 1 significant figure as all non-zero digits are significant and zeros to the left of the first non-zero digit are not significant.
 iv 1290 has 3 significant figures as trailing zeros in a whole number are not significant.
 v 1209 has 4 significant figures as all non-zero digits are significant and zeros between non-zero digits are significant.
2 i $280 = 300$ (1 s.f.)
 ii $0.072 = 0.07$ (1 s.f.)
 iii $390.8 = 400$ (1 s.f.)
 iv $0.001 32 = 0.001$ (1 s.f.)
3 i $355 = 360$ (2 s.f.)
 ii $0.0801 = 0.080$ (2 s.f.)
 iii $1.075 = 1.1$ (2 s.f.)
 iv $1560.03 = 1600$ (2 s.f.)
4 i $2971 = 2970$ (3 s.f.)
 ii $0.3259 = 0.326$ (3 s.f.)
 iii $10410 = 10400$ (3 s.f.)
 iv $0.5006 = 0.501$ (3 s.f.)
5 $\sqrt[3]{8.7 + 2 \times 1.6} = 425.881 192 9$
 a 400 correct to 1 significant figures
 b 426 correct to 3 significant figures
 c 425.9 correct to 1 decimal place
 d 425.88 correct to the nearest hundredth
6 $\pi = 3.141592654$
 a 3 correct to the nearest unit
 b 3.14 correct to 2 d.p.
 c 3.1 correct to 2 s.f.
 d 3.142 correct to 3 d.p.
7
\(a \) \(238 = 200 \) (1 s.f.)
\(b \) \(4609 = 4610 \) (3 s.f.)
\(c \) \(2.700 \approx 2.70 \) (3 s.f.)

8
\(a \) \(\frac{\sqrt{3.375}}{1.5^2 + 1.8} = 0.370 \)
\(b \) \(0.37 \)
\(i \) \(0.370 \)
\(ii \) \(0.3704 \)
\(iii \) \(0.3704 \)

Exercise 1J

1
\(a \) \(A = \pi r^2 \) \(10.5 = \pi r^2 \) \(r = \frac{\sqrt{10.5}}{\pi} \) \(r = 1.828 \) cm (4 s.f.)
\(b \) \(C = 2\pi \) \(C = 2\pi \times \frac{\sqrt{10.5}}{\pi} \) \(C = 11 \) cm (2 s.f.)

2
\(a \) \(\frac{\sqrt{2} + \sqrt{10}}{2} = 2.288 \) (4 s.f.)
\(b \) substitute the values of \(p \) and \(q \) in the formula. \((p + q)^2 = (\sqrt{2} + \sqrt{10})^2 = 20.9 \) (3 s.f.)
\(c \) \(\sqrt{2} \times \sqrt{10} = 4.5 \) cm² (2 s.f.)

Exercise 1K

1
\(a \) \(298 \times 10.75 = 300 \times 10 = 3000 \)
\(b \) \(3.8^2 = 3.8 \times 3.8 = 4 \times 4 = 16 \)
\(c \) \(147 \approx 150 = 15 \)
\(d \) \(11.02 \approx 10 \)
\(e \) \(\sqrt{103} = \sqrt{100} = 10 \)
\(f \) \(210 \times 18 = 200 \times 20 = 4000 \) pipes.
\(g \) population density = \(\frac{\text{total population}}{\text{land area}} \)
\(h \) population density = \(\frac{127,076,183}{377,835} \)
\(i \) population density = \(\frac{120,000,000}{40,0000} \)
\(j \) population density = \(300 \) people per km²

2
Number of reams = \(\frac{9000}{500} \)
Number of reams = \(\frac{10000}{500} \)
Number of reams = \(20 \)

3
Average speed = \(\frac{\text{distance travelled}}{\text{time taken}} \)
Average speed = \(\frac{33}{1.8} \)
Average speed = \(\frac{30}{2} \)
Average speed = \(15 \) km h⁻¹

4
Number of visitors per year = \(53,000 \times 365 \)
Number of visitors per year = \(50,000 \times 400 \)
Number of visitors per year = \(20,000,000 \)

6
\(7 \) estimate the area of the square using reasonable numbers.
Area of square = \(100.1 \times 100.1 \)
Area of square = \(100 \times 100 \)
Area of square = \(10,000 \) m²
Therefore Peter's calculation is not correct. \(10,000 \) is far bigger than \(1020.01 \)

Exercise 1L

1
\(a \) substitute the values of \(a \) and of \(b \) in the given formula. \(3a + b^3 = 3 \times 5.2 + 4.7^3 = 119.423 \)
\(b \) Percentage error = \(\frac{v_4 - v_E}{v_E} \times 100\% \)
Percentage error = \(\frac{140 - 119.423}{119.423} \times 100\% \)
Percentage error = \(17.2\% \) (3 s.f.)

2
\(a \) Actual final grade = \(\frac{8.3 + 6.8 + 9.4}{3} \)
Actual final grade = \(8.17 \) (3 s.f.)
\(b \) The three grades rounded are 8, 7 and 9.
Approximate final grade = \(\frac{8 + 7 + 9}{3} \)
Approximate final grade = \(8 \)

3
\(a \) Exact area = \(5.34 \times 3.48 \)
Exact area = \(18.5832 \) m²
\(b \) Length = \(5.3 \) m
Width = \(3.5 \) m
\(c \) Approximate area = \(18.55 \) m²
Percentage error = \(\frac{18.55 - 18.5832}{18.5832} \times 100\% \)
Percentage error = \(0.179\% \) (3 s.f.)

4
\(a \) \(A = \pi r^2 \) \(89 = \pi r^2 \) \(r = \frac{\sqrt{89}}{\pi} \) cm \(r = 5.323 \) m (3 d.p.)
\(b \) \(C = 2\pi \) \(C = 2\pi \times \frac{\sqrt{89}}{\pi} \)
\(C = 33.4 \) m (3 s.f.)
c Approximate value for perimeter = 30 m
Accepted value for perimeter = 33.4 m
Percentage error = \(\frac{30 \text{ m} - 33.4 \text{ m}}{33.4 \text{ m}} \times 100\% \)
Percentage error = 10% (2 s.f.)

Exercise 1M
1 \(2.5 \times 10^{-3}; 10^9 \)
2 a number is written in standard form if it is written as
\(a \times 10^k \) where \(1 \leq a < 10 \) and \(k \) is an integer.

a \(135 \ 600 = 1.356 \times 10^5 \) or \(1.36 \times 10^5 \) (3 s.f.)
b \(0.00245 = 2.45 \times 10^{-3} \)
c \(16 \ 000 \ 000 \ 000 = 1.6 \times 10^{10} \)
d \(0.000 \ 108 = 1.08 \times 10^{-4} \)
e \(0.23 \times 10^3 = 2.3 \times 10^2 \)

Exercise 1N
1 a \(x \times y = 6.3 \times 10^6 \times 2.8 \times 10^{10} = 1.764 \times 10^{17} \)
or \(1.76 \times 10^{17} \) (3 s.f.)
b \(\frac{x}{y} = \frac{6.3 \times 10^6}{2.8 \times 10^{10}} = 2.25 \times 10^{-4} \)
c \(\sqrt{\frac{x}{y}} = \sqrt{\frac{6.3 \times 10^6}{2.8 \times 10^{10}}} = 1.5 \times 10^{-2} \)
2 a the arithmetic mean between \(a \) and \(b \) is simply \(\frac{a + b}{2} \).
Arithmetic mean = \(\frac{2.5 \times 10^6 + 3.48 \times 10^6}{2} \)
Arithmetic mean = 2990000
Arithmetic mean = 2.99 \times 10^6

Exercise 10
1 a \(\text{km h}^{-2} \) or \(\text{km/h}^2 \)
b \(\text{kg m}^{-3} \) or \(\text{kg/m}^3 \)
c \(\text{m s}^{-1} \) or \(\text{m/s} \)

Exercise 1P
1 a \(2.36 \text{ m}^2 = 2.36 \times 10^4 \text{ cm}^2 = 23600 \text{ cm}^2 \)
b \(1.5 \text{ dm}^2 = 1.5 \times 10^{-4} \text{ dm}^2 = 0.00015 \text{ dm}^2 \)
c \(5400 \text{ mm}^2 = 5400 \times 10^{-2} \text{ cm}^2 = 54 \text{ cm}^2 \)
d \(0.06 \text{ m}^2 = 0.06 \times 10^2 \text{ mm}^2 = 60000 \text{ mm}^2 \)
e \(0.8 \text{ km}^2 = 0.8 \times 10^4 \text{ hm}^2 = 80 \text{ hm}^2 \)
f \(35000 \text{ m}^2 = 35000 \times 10^{-6} \text{ km}^2 = 0.035 \text{ km}^2 \)
2 a \(5 \text{ m}^3 = 5 \times 10^6 \text{ cm}^3 = 5000000 \text{ m}^3 \)
b \(0.1 \text{ dam}^3 = 0.1 \times 10^3 \text{ m}^3 = 1 \times 10^2 \text{ m}^3 \)
c \(350000 \text{ mm}^3 = 350000 \times 10^{-6} \text{ dm}^3 = 3.5 \times 10^2 \text{ dm}^3 \)
d \(255 \text{ m}^3 = 255 \times 10^9 \text{ mm}^3 = 2.55 \times 10^{11} \text{ mm}^3 \)
e \(12000 \text{ m}^3 = 12000 \times 10^{-3} \text{ dam}^3 = 1.2 \times 10^4 \text{ dam}^3 \)
0.7802 \text{ hm}^3 = 0.7802 \times 10^3 \text{ dam}^3
\begin{align*}
&= 7.802 \times 10^2 \text{ dam}^3 \\
&= 7.80 \times 10^2 \text{ dam}^3 \text{(3 s.f.)}
\end{align*}

the area of a square with side length \(l \) is \(l^2 \).

Area = \(l \times l \)

Area = 13 \text{ cm}^2

Area = 169 \text{ cm}^2

Area = 169 \times 10^{-4} \text{ m}^2 = 0.0169 \text{ m}^2

the volume of a cube with side length (or edge) \(l \) is \(l^3 \).

Volume = \(l^3 \)

Volume = 0.85 \text{ m}^3

Volume = 0.614125 \text{ m}^3

Volume = 0.614125 \times 10^6 \text{ cm}^3

Volume = 614125 \text{ cm}^3 \text{ or } 614000 \text{ cm}^3 \text{ (3 s.f.)}

convert all the measurements to the same unit.

0.081 \text{ dam}^2 = 8.1 \text{ m}^2

8000000 \text{ mm}^2 = 8 \text{ m}^2

82 \text{ dm}^2 = 0.82 \text{ m}^2

7560 \text{ cm}^2 = 0.756 \text{ m}^2

Therefore the list from smallest is

7560 \text{ cm}^2; 0.8 \text{ m}^2; 82 \text{ dm}^2 8000000 \text{ mm}^2; 0.081 \text{ dam}^2

convert all the measurements to the same unit.

11.2 \text{ m}^3

1200 \text{ dm}^3 = 1.2 \text{ m}^3

0.01 \text{ dam}^3 = 10 \text{ m}^3

11020000000 \text{ mm}^3 = 11.02 \text{ m}^3

10900000 \text{ cm}^3 = 10.9 \text{ m}^3

Therefore the list from smallest is

1200 \text{ dm}^3; 0.01 \text{ dam}^3; 10 \text{ m}^3; 11020000000 \text{ mm}^3; 11.2 \text{ m}^3

Exercise 1Q

1 a change all to seconds

1 \text{ d} = 24 \text{ h} = 24 \times 60 \text{ min}

= 24 \times 60 \times 60 \text{ s} = 86400 \text{ s}

2 \text{ h} = 2 \times 60 \text{ min} = 2 \times 60 \times 60 \text{ s} = 7200 \text{ s}

23 \text{ min} = 23 \times 60 \text{ s} = 1380 \text{ s}

Therefore

1 \text{ d} 2 \text{ h} 23 \text{ min} = 86400 \text{ s} + 7200 \text{ s} + 1380 \text{ s}

= 94980 \text{ s}

b 94980 \text{ s} = 95000 \text{ (nearest 100)}

2 a change all to seconds

2 \text{ d} = 48 \text{ h} = 48 \times 60 \text{ min} = 48 \times 60 \times 60 \text{ s}

= 172800 \text{ s}

5 \text{ min} = 5 \times 60 \text{ s} = 300 \text{ s}

Therefore

2 \text{ d} 5 \text{ min} = 172800 \text{ s} + 300 \text{ s} = 173100 \text{ s}

b 173100 \text{ s} = 1.731 \times 10^5 \text{ s or } 1.73 \times 10^5 \text{ s (3 s.f.)}

3 a \(5.1 = 5 \times 10^1 \text{ ml} = 5000 \text{ ml} \)

b \(0.56 \text{ ml} = 0.56 \times 10^{-3} \text{ hl} = 0.0000056 \text{ hl} \)

c \(4500 \text{ dal} = 4500 \times 10^1 \text{ cl} = 4500000 \text{ cl} \)

4 a \(1 \text{ l} = 1 \text{ dm}^3 \)

b \(500 \text{ l} = 500 \text{ dm}^3 = 500 \times 10^1 \text{ cm}^3 = 5 \times 10^6 \text{ cm}^3 \)

b \(145.8 \text{ dl} = 14.58 \text{ l} = 1.458 \times 10^1 \text{ dm}^3 \)

or \(1.46 \times 10^1 \text{ dm}^3 \) (3 s.f.)

c \(8 \text{ hl} = 800 \text{ l} = 800 \text{ dm}^3 = 800 \times 1000 \text{ cm}^3 = 8 \times 10^3 \text{ cm}^3 \)

4 a Area = \(l \times l \)

Area = 13 \text{ cm}^2

Area = 169 \text{ cm}^2

4 b the volume of a cube with side length (or edge) \(l \) is \(l^3 \).

Volume = \(l^3 \)

Volume = 0.85 \text{ m}^3

Volume = 0.614125 \text{ m}^3

Volume = 0.614125 \times 10^6 \text{ cm}^3

Volume = 614125 \text{ cm}^3 \text{ or } 614000 \text{ cm}^3 \text{ (3 s.f.)}

5 a 12.5 \text{ m}^3 = 12.5 \text{ l} = 13 \text{ correct to the nearest unit.}

b 0.368 \text{ m}^3 = 0.368 \times 10^3 \text{ dm}^3 = 368 \text{ dm}^3

= 368 \text{ l} = 3.68 \text{ hl}

= 4 \text{ hl} correct to the nearest unit.

c 809 \text{ cm}^3 = 809 \times 10^{-3} \text{ dm}^3 = 0.809 \text{ dm}^3

= 0.809 \text{ l} = 80.9 \text{ cl}

= 81 \text{ cl} correct to the nearest unit.

6 a Average speed = \frac{\text{distance travelled}}{\text{time taken}}

40 \text{ m min}^{-1} = \frac{3000 \text{ m}}{\text{time taken}}

\text{time taken} = \frac{3000 \text{ m}}{40 \text{ m min}^{-1}}

\text{time taken} = 75 \text{ min}

b 75 \text{ min} = 75 \times 60 \text{ s} = 4500 \text{ s}

7 a Volume = \(1.5^3 \)

Volume = 3.375 \text{ m}^3

b 3.375 \text{ m}^3 = 3.375 \times 10^3 \text{ dm}^3 = 3375 \text{ dm}^3

c 3375 \text{ dm}^3 = 3375 \text{ l} \text{ and } 3375 \text{ l} < 4000 \text{ l}

\text{therefore } 4000 \text{ l} \text{ of water cannot be poured in this container. Only } 3375 \text{ l}

\text{can be poured.}

8 a \(\frac{4}{5} \) of 220 \text{ cm}^3 = 176 \text{ cm}^3

176 \text{ cm}^3 = 176 \times 10^{-3} \text{ dm}^3 = 0.176 \text{ l}

b \(\frac{15}{0.176} = 8.52 \text{ tea cups therefore Mercedes can serve up to 8 tea cups.}

9 a Average speed = \frac{\text{distance travelled}}{\text{time taken}}

800 \text{ km h}^{-1} = \frac{6900 \text{ km}}{\text{time taken}}

\text{time taken} = \frac{6900 \text{ km}}{800 \text{ km h}^{-1}}

\text{time taken} = 8.625 \text{ h} \text{ or } 8.63 \text{ h (3 s.f.)}

b Average speed = \frac{\text{distance travelled}}{\text{time taken}}

\text{Average speed} = \frac{1393 \text{ km}}{2 \text{ h}}

\text{Average speed} = 696.5 \text{ km h}^{-1} \text{ or } 697 \text{ km h}^{-1}
c Time travelling = 8.625 h + 2 h + 1.5 h
 = 12.125 h
Arrival time = 10 + 12.125 = 22.125 h or 10:13 PM

Exercise 1R

1 a \(t_c = t_F - 273.15 \)
 \(t_c = 280 - 273.15 = 6.85 \)
 6.85 °C = 6.9 °C correct to one tenth of degree

b \(80 = \frac{9}{5} t_c + 32 \)
 \(t_c = \frac{(80 - 32) \times 5}{9} \)
 \(t_c = 80 \times \frac{5}{9} = 26.6 \)
 26.6 °C = 26.7 °C correct to one tenth of degree

Exercise 1R

1 a \(t_c = t_F - 273.15 \)
 \(t_c = 280 - 273.15 = 6.85 \)
 6.85 °C = 6.9 °C correct to one tenth of degree

b \(80 = \frac{9}{5} t_c + 32 \)
 \(t_c = \frac{(80 - 32) \times 5}{9} \)
 \(t_c = 80 \times \frac{5}{9} = 26.6 \)
 26.6 °C = 26.7 °C correct to one tenth of degree

Exercise 1R

1 a \(t_c = t_F - 273.15 \)
 \(t_c = 280 - 273.15 = 6.85 \)
 6.85 °C = 6.9 °C correct to one tenth of degree

b \(80 = \frac{9}{5} t_c + 32 \)
 \(t_c = \frac{(80 - 32) \times 5}{9} \)
 \(t_c = 80 \times \frac{5}{9} = 26.6 \)
 26.6 °C = 26.7 °C correct to one tenth of degree

Review exercise

Paper 1 style questions

1 \(\begin{array}{ccccc}
5 & \pi & 2 & -3 & 0.8 \\
N & \checkmark & & & \\
Z & \checkmark & \checkmark & & \\
Q & \checkmark & \checkmark & \checkmark & \checkmark \\
R & \checkmark & \checkmark & \checkmark & \checkmark \\
\end{array} \)

2 a \(\sqrt{2} \)
 \(\sqrt{2} = 1.4142 \)
 \(14.1 \times 10^{-1} = 1.41 \times 10^{0} \)

b \(\sqrt{2} = 1.4142 \)
 \(0.00139 \times 10^{2} = 1.39 \times 10^{-3} \)
 \(1414 \times 10^{-2} = 1.414 \times 10^{1} \)
 \(0.00139 \times 10^{3}; 14.1 \times 10^{-1}; \)
 \(\sqrt{2}; 1414 \times 10^{-2}; 1.4 \times 10^{2} \)

3 a 2690 kg = 2.69 \times 10^{3} kg

b i 2.7 \times 10^{3} kg = 2700 kg
 ii \[\text{percentage error formula} \]
 \[\text{Percentage error} = \frac{|v_A - v_E|}{v_E} \times 100\% \]
 \[\text{Percentage error} = \frac{2700 - 2690}{2690} \times 100\% \]
 \[\text{Percentage error} = 0.372\% \ (3 \text{ s.f.}) \]

4 a 299 792 458 m s\(^{-1}\) = 300 000 000 m s\(^{-1}\)
 b i m s\(^{-1}\) means metres per second therefore the answer from a gives you the distance traveled in 1 second.
 \(1 \text{ s } \rightarrow 300 000 000 \text{ m} \)
 \(300 000 000 \text{ m} = 300 000 000 \times 10^{-3} \text{ km} \)
 \(= 300 000 \text{ km} \)
 \(3600 \text{ s } \rightarrow 300 000 \text{ km} \times 3600 \)
 \(= 1080 000 000 \text{ km} \)
 Therefore the average velocity is 1.08 \times 10^{9} \text{ km h}^{-1}

5 a 52200 \times 90 = 580 g
 580 g = 580 \times 10^{-3} \text{ kg} = 0.580 \text{ kg}
 b 0.580 kg = 0.6 \text{ kg} (1 \text{ s.f.})
 c Accepted value = 0.6 kg
 Estimated value = 0.4 kg
 \[\text{Percentage error} = \frac{v_A - v_E}{v_E} \times 100\% \]
 \[\text{Percentage error} = \frac{0.4 - 0.6}{0.6} \times 100\% \]
 \[\text{Percentage error} = 33.3\% \ (3 \text{ s.f.}) \]

6 a 1560 \text{ cm}^{3} = 1560 \times 10^{-3} \text{ dm}^{3} = 1.56 \text{ dm}^{3}
 b 1.56 \text{ dm}^{3} = 1.56 l
 \(\frac{3}{4} \text{ of } 1.56 \text{ l} = 1.17 l \)
 c i \(\frac{25}{37} \) = 21.4 jars
 Therefore Sean pours 21 jars.
 ii 21 \times 1.17 = 24.571
 25 - 24.57 = 0.431
7 a \(x = \frac{30y^2}{\sqrt{y^4 + 1}} \) when \(y = 1.25 \)
\[
x = \frac{30(1.25)^2}{\sqrt{1.25^4 + 1}}
\]
\(x = 31.25 \)
b \(31.25 = 31.3 \) (3 s.f.)
c \(31.3 = 3.13 \times 10^1 \)

8 a \(A = x^2 \)
b i \(x = 2.56 \) km \(= 2.56 \times 10^6 \) m\(^2 = 2560000 \) m\(^2 \)
\[
x = 2 \times 2560000
\]
\(x = \sqrt{2} \times 2560000
\]
\(x = 1600 \) m

9 a \(t_F = \frac{9}{5} \times t_K - 459.67 \)
\[
t_K = \frac{9}{5} \times 100 = 459.67
\]
\(t_K = \frac{5}{9} (100 + 459.67) \)
\(t_F = 310.927... = 311 \) correct to the nearest unit

10 a \(4x + 5 > x + 6 \)
\(x > 1 \)

b
\[
\begin{array}{c|c|c|c|c|c}
 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline
\hline
1 & & & & & \checkmark & & \\
0.75 & & & & & & & \checkmark \\
0.75 & & & & & & & \checkmark \\
\hline
\end{array}
\]
Therefore \(\sqrt{3}; 2.06; \frac{101}{100} \) ...

11 a Area = 210 mm \(\times 297 \) mm
\[
\text{Area} = 62370 \text{ mm}^2
\]
b \(62370 \text{ mm}^2 = 62370 \times 10^{-6} \text{ m}^2 = 0.062370 \text{ m}^2 \)
c \(1 \text{ m}^2 = \frac{75 \text{ g}}{0.062370 \text{ m}^2} \)
\[
0.062370 \text{ m}^2 \text{ per page weight} \rightarrow 0.062370 \times 75
\]
\(= 4.67775 \text{ g} = 4.68 \text{ g} \) (3 s.f.)
d \(4.68 \times 500 = 2340 \text{ g} \)
\(2340 \text{ g} = 2340 \times 10^{-3} \text{ kg} = 2.34 \text{ kg} \)

Review exercise
Paper 2 style questions
1 a Perimeter of the field = 2 \(\times 2500 + 2 \times 1260 \)
\[
\text{Perimeter of the field} = 7520 \text{ m}
\]
\(7520 \text{ m} = 7520 \times 10^{-3} \text{ km} = 7.52 \text{ km} \)

b Cost of fencing the field = 7.52 \times 327.64
Cost of fencing the field = 2463.85 \text{ (2 d.p.)}
\[
V_A = 7.6 \times 327.64 = 2490.064
\]
c Percentage error = \(\frac{v_A - v_E}{v_E} \times 100\% \)
\[
\text{Percentage error} = \frac{2490.064 - 2463.85}{2463.85} \times 100\%
\]
Percentage error = 1.06\% (3 s.f.)
d Area of the field = 2500 \times 1260
Area of the field = 315000 \text{ m}^2
Area of the field = 315000 \times 10^{-6} \text{ km}^2
\[
= 3.15 \text{ km}^2
\]

2 a Radius of semicircles = \(\frac{400}{2} = 200 \text{ m} \)
Length of circumference = \(2\pi \)
Length of circumference = \(2\pi \times 200 = 400\pi \)
Perimeter = \(2 \times 800 + 400\pi \)
Perimeter = 2856.637... m
\[
= 2857 \text{ m correct to the nearest metre.}
\]
b Number of laps that Elger runs = \(\frac{\text{total distance run by Elger}}{\text{perimeter of running track}} \)
Number of laps that Elger runs = \(\frac{14200}{2856.637...} \)
Number of laps that Elger runs = 4.97
Therefore Elger runs 4 complete laps around the track.
c convert the distance to km
\[
2856.637... \text{ m} = 2856.637... \times 10^{-3} \text{ km}
\]
\[
= 2.856637... \text{ km}
\]
average speed = \(\frac{\text{distance travelled}}{\text{time taken}} \)
\[
19 \text{ km h}^{-1} = \frac{2.856637... \text{ km}}{19 \text{ km h}^{-1}}
\]
time taken = \(\frac{2.856637... \text{ km}}{19 \text{ km h}^{-1}} \)
time taken = 0.150 h (3 s.f.)
d average speed = \(19 \text{ km h}^{-1} = \frac{19 \text{ km}}{1 \text{ h}} = \frac{19000 \text{ m}}{60 \text{ min}} \)
\[
= \left(\frac{19000}{60} \right) \text{ m min}^{-1}
\]
\[
\left(\frac{19000}{60} \right) \text{ m min}^{-1} = 14200 \text{ m time taken}
\]
time taken = \(\frac{14200 \text{ m}}{14200 \text{ m time taken}} \)
time taken = 44.842 min (5 s.f.)
e Percentage error = \(\frac{v_A - v_E}{v_E} \times 100\% \)
\[
\text{Percentage error} = \frac{44 - 44.842}{44.842} \times 100\%
\]
Percentage error = 1.88\% (3 s.f.)
3 a Diameter = 2.5 cm
 Radius = \(\frac{2.5}{2} = 1.25 \) cm
 Volume of one chocolate = \(\frac{4}{3} \pi r^3 \)
 Volume of one chocolate = \(\frac{4}{3} \pi (1.25)^3 \)
 Volume of one chocolate = \(8.18123 \ldots \) cm\(^3\)
 = \(8.18 \) cm\(^3\) (2 d.p.)

3 b first convert the measurements to cm.
 Radius of cylindrical box = 12.5 mm
 = 1.25 cm
 Volume of cylindrical box = \(\pi r^2 h \)
 Volume of cylindrical box = \(\pi (1.25)^2 15 \)
 Volume of cylindrical box = \(73.63107 \ldots \) cm\(^3\)
 = \(73.63 \) cm\(^3\) (2 d.p.)

3 c Number of chocolates in the box = \(\frac{15}{2.5} = 6 \) chocolates

3 d Volume occupied by the chocolates
 = \(8.18123 \ldots \times 6 = 49.087 \ldots \) cm\(^3\)
 Volume not occupied by the chocolates
 = volume of box – volume occupied by chocolates
 Volume not occupied by the chocolates
 = \(73.63107 \ldots - 49.087 \ldots = 24.5 \) cm\(^3\) (3 s.f.)

3 e 24.5 cm\(^3\) = \(24.5 \times 10^3 \) mm\(^3\) = \(24500 \) mm\(^3\)

3 f \(2.45 \times 10^4 \) mm\(^3\)