Student Book: *International Mathematics for Cambridge IGCSE®*

Syllabus: Cambridge IGCSE® Mathematics (0607)

<table>
<thead>
<tr>
<th>INTERNATIONAL MATHEMATICS FOR CAMBRIDGE IGCSE</th>
<th>Student Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Number</td>
<td></td>
</tr>
<tr>
<td>1.1 Vocabulary and notation for different sets of numbers: natural numbers \mathbb{N}, primes, squares, cubes, integers \mathbb{Z}, rational numbers \mathbb{Q}, irrational numbers, real numbers \mathbb{R}, triangle numbers $\mathbb{N} = {0, 1, 2, \ldots}$</td>
<td>Pages 39 and 46–51</td>
</tr>
<tr>
<td>1.2 Use of the four operations and brackets</td>
<td>Pages 38–45</td>
</tr>
<tr>
<td>1.3 Highest common factor, lowest common multiple</td>
<td>Pages 46–47</td>
</tr>
<tr>
<td>1.4 Calculation of powers and roots</td>
<td>Pages 46–47</td>
</tr>
<tr>
<td>1.5 Ratio and proportion including use of e.g. map scales</td>
<td>Pages 58–65</td>
</tr>
<tr>
<td>1.6 Absolute value $</td>
<td>x</td>
</tr>
<tr>
<td>1.7 Equivalences between decimals, fractions, ratios and percentages</td>
<td>Pages 44 and 65–67</td>
</tr>
<tr>
<td>1.8 Percentages including applications such as interest and profit, includes both simple and compound interest and also percentiles</td>
<td>Pages 68–72</td>
</tr>
<tr>
<td>1.9 Meaning of exponents (powers, indices) in \mathbb{Q} Standard Form $a \times 10^n$ where $1 \leq a < 10$ and $n \in \mathbb{Z}$ Rules for exponents</td>
<td>Pages 55–58</td>
</tr>
<tr>
<td>1.10 Surds (radicals), simplification of square root expressions Rationalisation of the denominator e.g. $\frac{1}{\sqrt{3}}$</td>
<td>Pages 49–51</td>
</tr>
<tr>
<td>1.11 Estimating, rounding, decimal places and significant figures</td>
<td>Pages 53–55</td>
</tr>
<tr>
<td>1.12 Calculations involving time: second (s), minutes (min), hours (h), days, months, years including the relation between consecutive units 1 year = 365 days</td>
<td>Pages 73–78</td>
</tr>
<tr>
<td>1.13 Problems involving speed, distance and time problems</td>
<td>Pages 73–78</td>
</tr>
<tr>
<td>2. Algebra</td>
<td></td>
</tr>
<tr>
<td>2.1 Writing, showing and interpretation of inequalities, including those on the real number line</td>
<td>Pages 228–234</td>
</tr>
<tr>
<td>2.2 Solution of linear and quadratic inequalities Solution of inequalities using a graphics calculator e.g. $2x^2 + 5x - 3 < 0$</td>
<td>Pages 228–234</td>
</tr>
<tr>
<td>2.3 Solution of linear equations including those with fractional expressions</td>
<td>Pages 98–107</td>
</tr>
<tr>
<td>Section</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>2.4 Indices</td>
<td>234–240</td>
</tr>
<tr>
<td>2.5 Derivation, rearrangement and evaluation of formulae</td>
<td>241–248</td>
</tr>
<tr>
<td>2.6 Solution of simultaneous linear equations in two variables</td>
<td>107–114</td>
</tr>
<tr>
<td>2.7 Expansion of brackets, including the square of a binomial</td>
<td>94–97</td>
</tr>
<tr>
<td>2.8 Factorisation:</td>
<td>114–118</td>
</tr>
<tr>
<td>- common factor e.g. $6x^2 + 9x = 3x(2x + 3)$</td>
<td></td>
</tr>
<tr>
<td>- difference of squares e.g. $9x^2 + 16y^2 = (3x - 4y)(3x + 4y)$</td>
<td></td>
</tr>
<tr>
<td>- trinomial e.g. $6x^2 + 11x - 10 = (3x - 2)(2x + 5)$</td>
<td></td>
</tr>
<tr>
<td>- four term e.g. $xy - 3x + 2y - 6 = (x + 2)(y - 3)$</td>
<td></td>
</tr>
<tr>
<td>2.9 Algebraic fractions:</td>
<td>248–253</td>
</tr>
<tr>
<td>- simplification, including use of factorisation</td>
<td></td>
</tr>
<tr>
<td>- addition or subtraction of fractions with linear denominators</td>
<td></td>
</tr>
<tr>
<td>- multiplication or division and simplification of two fractions</td>
<td></td>
</tr>
<tr>
<td>2.10 Solution of quadratic equations:</td>
<td>118–125</td>
</tr>
<tr>
<td>- by factorisation</td>
<td></td>
</tr>
<tr>
<td>- using a graphics calculator</td>
<td></td>
</tr>
<tr>
<td>- using the quadratic formula (formula given)</td>
<td></td>
</tr>
<tr>
<td>2.11 Use of a graphics calculator to solve equations, including those</td>
<td>240</td>
</tr>
<tr>
<td>- which may be unfamiliar</td>
<td></td>
</tr>
<tr>
<td>- e.g. $2^x - 1 = 1/x^3$</td>
<td></td>
</tr>
<tr>
<td>2.12 Continuation of a sequence of numbers or patterns</td>
<td>253–266</td>
</tr>
<tr>
<td>- Determination of the nth term</td>
<td></td>
</tr>
<tr>
<td>- Use of a difference method to find the formula for a linear sequence, a quadratic sequence or a cubic sequence</td>
<td></td>
</tr>
<tr>
<td>- Identification of a simple geometric sequence and determination of its formula</td>
<td></td>
</tr>
<tr>
<td>2.13 Direct variation (proportion) $y \propto x$; $y \propto x^2$;</td>
<td>266–272</td>
</tr>
<tr>
<td>- $y \propto x^3$; $y \propto$</td>
<td></td>
</tr>
<tr>
<td>- Inverse variation $y \propto 1/x$, $y \propto 1/x^2$, $y \propto$</td>
<td></td>
</tr>
<tr>
<td>- $1/\sqrt{x}$</td>
<td></td>
</tr>
<tr>
<td>- Best variation model for given data</td>
<td></td>
</tr>
<tr>
<td>3. Functions</td>
<td></td>
</tr>
<tr>
<td>3.1 Notation</td>
<td>157–158</td>
</tr>
<tr>
<td>- Domain and range (domain is \mathbb{R} unless stated otherwise)</td>
<td></td>
</tr>
<tr>
<td>- Mapping diagrams</td>
<td></td>
</tr>
<tr>
<td>3.2 Recognition of the following function types from the shape of</td>
<td>163–168</td>
</tr>
<tr>
<td>- their graphs (some of a, b, c or d may be 0):</td>
<td></td>
</tr>
<tr>
<td>- linear $f(x) = ax + b$</td>
<td></td>
</tr>
<tr>
<td>- quadratic $f(x) = ax^2 + bx + c$</td>
<td></td>
</tr>
<tr>
<td>- cubic $f(x) = ax^3 + bx^2 + cx + d$</td>
<td></td>
</tr>
<tr>
<td>- reciprocal $f(x) = a/x$</td>
<td></td>
</tr>
<tr>
<td>- exponential $f(x) = a^x$ with $0 < a < 1$ or $a > 1$ (compound</td>
<td></td>
</tr>
<tr>
<td>- interest)</td>
<td></td>
</tr>
<tr>
<td>- absolute value $f(x) =</td>
<td>ax + b</td>
</tr>
<tr>
<td>- trigonometric $f(x) = \sin(bx); \cos(bx); \tan(x)$ (including</td>
<td></td>
</tr>
<tr>
<td>- period and amplitude)</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>3.3</td>
<td>Determination of at most two of a, b, c or d in simple cases of 3.2</td>
</tr>
<tr>
<td>3.4</td>
<td>Finding the quadratic function given</td>
</tr>
<tr>
<td></td>
<td>vertex and another point,</td>
</tr>
<tr>
<td></td>
<td>x-intercepts and a point,</td>
</tr>
<tr>
<td></td>
<td>vertex or x-intercepts with $a = 1$.</td>
</tr>
<tr>
<td></td>
<td>$y = a(x - h)^2 + k$ has a vertex of (h, k)</td>
</tr>
<tr>
<td>3.5</td>
<td>Understanding of the concept of asymptotes and graphical identification of</td>
</tr>
<tr>
<td></td>
<td>examples e.g. $f(x) = \tan x$ asymptotes at 90°, 270° etc.,</td>
</tr>
<tr>
<td></td>
<td>excludes algebraic derivation of asymptotes, includes oblique asymptotes</td>
</tr>
<tr>
<td>3.6</td>
<td>Use of a graphics calculator to:</td>
</tr>
<tr>
<td></td>
<td>sketch the graph of a function including unfamiliar functions</td>
</tr>
<tr>
<td></td>
<td>produce a table of values (not mentioned explicitly in this syllabus)</td>
</tr>
<tr>
<td></td>
<td>find zeros, local maxima or minima</td>
</tr>
<tr>
<td></td>
<td>find the intersection of the graphs of functions (vertex of quadratic)</td>
</tr>
<tr>
<td>3.7</td>
<td>Simplify expressions such as $f(g(x))$ where $g(x)$ is a linear expression</td>
</tr>
<tr>
<td>3.8</td>
<td>Description and identification, using the language of transformations, of</td>
</tr>
<tr>
<td></td>
<td>the changes to the graph of $y = f(x)$ when $y = f(x) + k$, $y = k f(x)$,</td>
</tr>
<tr>
<td></td>
<td>$y = f(x + k)$, k an integer</td>
</tr>
<tr>
<td>3.9</td>
<td>Inverse function f^{-1}</td>
</tr>
<tr>
<td>3.10</td>
<td>Logarithmic function as the inverse of the exponential function</td>
</tr>
<tr>
<td></td>
<td>$y = a^x$ equivalent to $x = \log_a y$</td>
</tr>
<tr>
<td></td>
<td>Rules for logarithms corresponding to rules for exponents</td>
</tr>
<tr>
<td></td>
<td>Solution to $a^x = b$ as $x = \log_b / \log a$.</td>
</tr>
</tbody>
</table>

4. Geometry

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Use and interpret the geometrical terms: acute, obtuse, right angle, reflex,</td>
<td>187–192</td>
</tr>
<tr>
<td></td>
<td>parallel, perpendicular, congruent, similar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use and interpret vocabulary of triangles, quadrilaterals, polygons and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>simple solid figures</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Line and rotational symmetry</td>
<td>199–201</td>
</tr>
<tr>
<td>4.3</td>
<td>Angle measurement in degrees</td>
<td>187–192</td>
</tr>
<tr>
<td>4.4</td>
<td>Angles round a point</td>
<td>187–192</td>
</tr>
<tr>
<td></td>
<td>Angles on a straight line and intersecting straight lines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertically opposite angles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternate and corresponding angles on parallel lines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angle sum of a triangle, quadrilateral and polygons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interior and exterior angles of a polygon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angles of regular polygons</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Pages</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>4.5</td>
<td>Similarity
Calculation of lengths of similar figures
Use of area and volume scale factors</td>
<td>202–214</td>
</tr>
<tr>
<td>4.6</td>
<td>Pythagoras’ Theorem and its converse in two and three dimensions
Including:
chord length
distance of a chord from the centre of a circle
differences on a grid</td>
<td>193–198</td>
</tr>
<tr>
<td>4.7</td>
<td>Use and interpret vocabulary of circles (includes sector and segment)
Properties of circles:
tangent perpendicular to radius at the point of contact
tangents from a point
angle in a semicircle
angles at the centre and at the circumference on the same arc
cyclic quadrilateral</td>
<td>215–222</td>
</tr>
<tr>
<td>5.</td>
<td>Transformations and vectors in two dimensions</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Notation:
Vector (\mathbf{a}); directed line segment (\mathbf{AB});
component form ((x, y))</td>
<td>343 and 349</td>
</tr>
<tr>
<td>5.2</td>
<td>Addition and subtraction of vectors
Negative of a vector
Multiplication of a vector by a scalar</td>
<td>343–353</td>
</tr>
<tr>
<td>5.3</td>
<td>Magnitude (</td>
<td>\mathbf{a}</td>
</tr>
<tr>
<td>5.4</td>
<td>Transformations on the Cartesian plane:
translation, reflection, rotation, enlargement (reduction), stretch
Description of a translation using the notation in 5.1</td>
<td>355–366</td>
</tr>
<tr>
<td>5.5</td>
<td>Inverse of a transformation</td>
<td>368–369</td>
</tr>
<tr>
<td>5.6</td>
<td>Combined transformations</td>
<td>367</td>
</tr>
<tr>
<td>6.</td>
<td>Mensuration</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Units: mm, cm, m, km
mm2, cm2, m2, ha, km2
mm3, cm3, m3
ml, cl, l
g, kg, t
(convert between units)</td>
<td>132 and 150</td>
</tr>
<tr>
<td>6.2</td>
<td>Perimeter and area of rectangle, triangle and compound shapes derived from these</td>
<td>128–131</td>
</tr>
<tr>
<td>6.3</td>
<td>Circumference and area of a circle
Arc length and area of sector</td>
<td>133–135 and 137–140</td>
</tr>
<tr>
<td>Topic</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>6.4 Surface area and volume of prism and pyramid (in particular, cuboid, cylinder and cone)</td>
<td>Pages 142–149 and 151–152</td>
<td></td>
</tr>
<tr>
<td>Surface area and volume of sphere and hemisphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(formulae given for curved surface areas of cylinder, cone and sphere; volume of pyramid, cone, cylinder, and sphere)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5 Areas and volumes of compound shapes</td>
<td>Pages 128–131 and 142–144</td>
<td></td>
</tr>
<tr>
<td>7. Co-ordinate geometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1 Plotting of points and reading from a graph in the Cartesian plane</td>
<td>Pages 277–278</td>
<td></td>
</tr>
<tr>
<td>7.2 Distance between two points</td>
<td>Pages 277–280</td>
<td></td>
</tr>
<tr>
<td>7.3 Midpoint of a line segment</td>
<td>Pages 277–280</td>
<td></td>
</tr>
<tr>
<td>7.4 Gradient of a line segment</td>
<td>Pages 277–280</td>
<td></td>
</tr>
<tr>
<td>7.5 Gradient of parallel and perpendicular lines</td>
<td>Pages 277–280</td>
<td></td>
</tr>
<tr>
<td>7.6 Equation of a straight line as (y = mx + c) and (ax + by = d) ((a, b \text{ and } d \text{ integer}))</td>
<td>Pages 280–283</td>
<td></td>
</tr>
<tr>
<td>7.7 Linear inequalities on the Cartesian plane (shade unwanted regions)</td>
<td>Pages 231–232</td>
<td></td>
</tr>
<tr>
<td>7.8 Symmetry of diagrams or graphs in the Cartesian plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Trigonometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1 Right-angled triangle trigonometry</td>
<td>Pages 308–322</td>
<td></td>
</tr>
<tr>
<td>8.2 Exact values for the trigonometric ratios of (0^\circ, 30^\circ, 45^\circ, 60^\circ, 90^\circ)</td>
<td>Pages 323–324</td>
<td></td>
</tr>
<tr>
<td>8.3 Extension to the four quadrants (0^\circ–360^\circ)</td>
<td>Page 327</td>
<td></td>
</tr>
<tr>
<td>8.4 Sine Rule (formula given, ASA, SSA (ambiguous case))</td>
<td>Pages 330–332</td>
<td></td>
</tr>
<tr>
<td>8.5 Cosine Rule (formula given, SAS, SSS)</td>
<td>Pages 333–338</td>
<td></td>
</tr>
<tr>
<td>8.6 Area of triangle (formula given)</td>
<td>Pages 128–131</td>
<td></td>
</tr>
<tr>
<td>8.7 Applications:</td>
<td>Pages 317–322 and 324–326</td>
<td></td>
</tr>
<tr>
<td>three-figure bearings and North, East, South, West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>problems in two and three dimensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.8 Properties of the graphs of (y = \sin x, y = \cos x, y = \tan x) ((x \text{ in degrees}))</td>
<td>Pages 327–328</td>
<td></td>
</tr>
<tr>
<td>9. Sets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1 Notation and meaning for:</td>
<td>Pages 374–383</td>
<td></td>
</tr>
<tr>
<td>is an element of (\in); is not an element of (\notin);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>is a subset of (\subseteq); is a proper subset of (\subset);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>universal set (U), empty set (\emptyset) or ({});</td>
<td></td>
<td></td>
</tr>
<tr>
<td>complement of (A), (A^\prime); number of elements in (A), (n(A))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2 Sets in descriptive form { x</td>
<td>} or as a list</td>
<td>Pages 374–383</td>
</tr>
<tr>
<td>9.3 Venn diagrams with at most three sets</td>
<td>Pages 374–383</td>
<td></td>
</tr>
<tr>
<td>9.4 Intersection and union of sets</td>
<td>Pages 374–383</td>
<td></td>
</tr>
</tbody>
</table>
10. Probability

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Probability P(A) as a fraction, decimal or percentage</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>Significance of its value</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>Relative frequency as an estimate of probability</td>
<td>386</td>
</tr>
<tr>
<td>10.3</td>
<td>Expected frequency of occurrences</td>
<td>389–392</td>
</tr>
</tbody>
</table>
| 10.4 | Combining events:
| | - the addition rule P(A or B) = P(A) + P(B) (mutually exclusive)
| | - the multiplication rule P(A and B) = P(A) x P(B) (independent) | 392–394 |
| 10.5 | Tree diagrams including successive selection with or without replacement | 394–399 |
| 10.6 | Probabilities from Venn diagrams and tables | 387–389 |

11. Statistics

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Reading and interpretation of graphs or tables of data</td>
<td>403–444</td>
</tr>
<tr>
<td>11.2</td>
<td>Discrete and continuous data</td>
<td>403–404</td>
</tr>
<tr>
<td>11.3</td>
<td>(Compound) bar chart, line graph, pie chart, stem and leaf diagram, scatter diagram</td>
<td>405–415 and 438</td>
</tr>
</tbody>
</table>
| 11.4 | Mean, mode, median, quartiles and range from lists of discrete data
| | Mean, mode, median and range from grouped discrete data | 416–424 |
| 11.5 | Mean from continuous data | 416–426 |
| 11.6 | Histograms with frequency density on the vertical axis using continuous data (includes histograms with unequal class intervals) | 424–429 |
| 11.7 | Cumulative frequency table and curve
| | Median, quartiles, percentiles and inter-quartile range (read from curve) | 430–437 |
| 11.8 | Use of a graphics calculator to calculate mean, median, and quartiles for discrete data and mean for grouped data | 423 and 420–421 |
| 11.9 | Understanding and description of correlation (positive, negative or zero) with reference to a scatter diagram (the coefficient of correlation is not required)
| | Straight line of best fit (by eye) through the mean on a scatter diagram
| | Use a graphics calculator to find equation of linear regression | 439–444 |