Complete Solutions to Exercises 6.2

1. We use the formula for the determinant of a 3×3 matrix:
 (a) Expand along the middle row because it contains a zero:
 \[
 \det \begin{pmatrix}
 1 & 3 & -1 \\
 2 & 0 & 5 \\
 -6 & 3 & 1
 \end{pmatrix}
 = -2\det \begin{pmatrix}
 3 & -1 \\
 3 & 1
 \end{pmatrix} + 0\det \begin{pmatrix}
 1 & -1 \\
 -6 & 1
 \end{pmatrix} - 5\det \begin{pmatrix}
 1 & 3 \\
 -6 & 3
 \end{pmatrix}
 \]
 \[
 = -2[(3\times1)-(3\times(-1))] + 0 - 5[(1\times3)-((-6)\times3)] = -117
 \]
 by (6.1)
 (b) Similarly we have
 \[
 \det \begin{pmatrix}
 2 & -10 & 11 \\
 5 & 3 & -4 \\
 7 & 9 & 12
 \end{pmatrix}
 = 2\det \begin{pmatrix}
 3 & -4 \\
 9 & 12
 \end{pmatrix} + 10\det \begin{pmatrix}
 5 & -4 \\
 7 & 12
 \end{pmatrix} + 11\det \begin{pmatrix}
 5 & 3 \\
 7 & 9
 \end{pmatrix}
 \]
 \[
 = 2[(3\times12)-(9\times(-4))] + 10[(5\times12)-(7\times(-4))] + 11[(5\times9)-(7\times3)] = 1288
 \]
 by (6.1)
 (c) Very similar to parts (a) and (b). Thus \(\det (C) = -114 \).

2. Using (6.6):
 \[
 \det \begin{pmatrix}
 i & j & k \\
 7 & 3 & -2 \\
 4 & 2 & 7
 \end{pmatrix}
 = i\det \begin{pmatrix}
 3 & -2 \\
 4 & 7
 \end{pmatrix} - j\det \begin{pmatrix}
 7 & -2 \\
 4 & 7
 \end{pmatrix} + k\det \begin{pmatrix}
 7 & 3 \\
 4 & 2
 \end{pmatrix}
 \]
 \[
 = i[(3\times7)-(2\times(-2))] - j[(7\times7)-(4\times(-2))] + k[(7\times2)-(4\times3)]
 \]
 \[
 = 25i - 57j + 2k
 \]

3. Expand the 3 by 3 matrix as normal:
 \[
 \det \begin{pmatrix}
 1 & 0 & -3 \\
 5 & x & -7 \\
 3 & 9 & x-1
 \end{pmatrix}
 = 1\det \begin{pmatrix}
 x & -7 \\
 9 & x-1
 \end{pmatrix} - 0 - 3\det \begin{pmatrix}
 5 & x \\
 3 & 9
 \end{pmatrix}
 \]
 \[
 = \begin{vmatrix}
 x(x-1)-(9(-7)) \\
 5\times9-(3\times3)
 \end{vmatrix}
 \]
 \[
 = x^2 - x + 63 - 3[45 - 3x]
 \]
 \[
 = x^2 - x + 63 - 135 + 9x = x^2 + 8x - 72
 \]
 Since we want to find the values of \(x \) when the determinant is zero, we have to solve
 \[
 x^2 + 8x - 72 = 0
 \]

 How do we solve this quadratic equation?
 Use the quadratic formula with \(a = 1, \ b = 8 \) and \(c = -72 \)
 \[
 x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - (4\times1\times(-72))}}{2}
 \]
 \[
 = \frac{-8 \pm \sqrt{352}}{2} = \frac{-8 \pm 18.76}{2} = -13.38, 5.38
 \]
 Thus \(x = -13.38, 5.38 \).
4. We need to find the cofactor of each element of the matrix \(A = \begin{pmatrix} 1 & 0 & 5 \\ -2 & 3 & 7 \\ 6 & -1 & 0 \end{pmatrix} \).

Cofactor of 1 is
\[
\det \begin{pmatrix} 3 & 7 \\ -1 & 0 \end{pmatrix} = (3\times0) - (-1\times7) = 7
\]

Cofactor of 0 is
\[
-\det \begin{pmatrix} -2 & 7 \\ 6 & 0 \end{pmatrix} = -[(-2\times0) - (6\times7)] = 42
\]

Cofactor of 5 is
\[
\det \begin{pmatrix} -2 & 3 \\ 6 & -1 \end{pmatrix} = [(-2\times(-1)) - (6\times3)] = -16
\]

Cofactor of \(-2\) is
\[
-\det \begin{pmatrix} 0 & 5 \\ -1 & 0 \end{pmatrix} = -[(0\times0) - (-1\times5)] = -5
\]

Cofactor of 3 is
\[
\det \begin{pmatrix} 1 & 5 \\ 6 & 0 \end{pmatrix} = [(1\times0) - (6\times5)] = -30
\]

Cofactor of 7 is
\[
-\det \begin{pmatrix} 1 & 0 \\ 6 & -1 \end{pmatrix} = -[(1\times(-1)) - (6\times0)] = 1
\]

Cofactor of 6 is
\[
\det \begin{pmatrix} 0 & 5 \\ 3 & 7 \end{pmatrix} = [(0\times7) - (3\times5)] = -15
\]

Cofactor of \(-1\) is
\[
-\det \begin{pmatrix} 1 & 5 \\ -2 & 7 \end{pmatrix} = -[(1\times7) - (-2\times5)] = -17
\]

Cofactor of 0 is
\[
\det \begin{pmatrix} 1 & 0 \\ -2 & 3 \end{pmatrix} = [(1\times3) - (-2\times0)] = 3
\]

Collecting the cofactors gives the cofactor matrix:
\[
C = \begin{pmatrix} 7 & 42 & -16 \\ -5 & -30 & 1 \\ -15 & -17 & 3 \end{pmatrix}
\]

Transposing this matrix (interchanging rows and columns) gives \(C^T = \begin{pmatrix} 7 & -5 & -15 \\ 42 & -30 & -17 \\ -16 & 1 & 3 \end{pmatrix} \).

The inverse matrix \(A^{-1} = \frac{1}{\det(A)} \text{adj}(A) \) where \(\text{adj}(A) = C^T = \begin{pmatrix} 7 & -5 & -15 \\ 42 & -30 & -17 \\ -16 & 1 & 3 \end{pmatrix} \).
What is the determinant of \(A \)?

\[
\det(A) = \det \begin{pmatrix} 1 & 0 & 5 \\ -2 & 3 & 7 \\ 6 & -1 & 0 \end{pmatrix} = \det \begin{pmatrix} 3 & 7 \\ -1 & 0 \end{pmatrix} + 5 \det \begin{pmatrix} -2 & 3 \\ 6 & -1 \end{pmatrix}
\]

\[
= (0 + 7) + 5(2 - 18) = -73
\]

Substituting \(\det(A) = -73 \) and \(\text{adj}(A) = \begin{pmatrix} 7 & -5 & -15 \\ 42 & -30 & -17 \\ -16 & 1 & 3 \end{pmatrix} \) into \(A^{-1} = \frac{1}{\det(A)} \text{adj}(A) \):

\[
A^{-1} = \frac{1}{73} \begin{pmatrix} 7 & -5 & -15 \\ 42 & -30 & -17 \\ -16 & 1 & 3 \end{pmatrix}
\]

5. (a) In this case \(\det(A) = 1 \) so we have an invertible matrix and use (6.2) to find the inverse.

Exchanging numbers 3 and 9 and placing a negative sign in front of the other numbers gives:

\[
A^{-1} = \begin{pmatrix} 3 & -2 \\ -13 & 9 \end{pmatrix}
\]

(b) Similarly we have \(B^{-1} = \begin{pmatrix} 5 & -7 \\ -12 & 17 \end{pmatrix} \).

(c) By (6.1) we have

\[
\det \begin{pmatrix} 5 & 4 \\ 3 & 1 \end{pmatrix} = (5 \times 1) - (3 \times 4) = -7
\]

So using (6.2) we have

\[
C^{-1} = -\frac{1}{7} \begin{pmatrix} 1 & -4 \\ -3 & 5 \end{pmatrix} = \begin{pmatrix} -1/7 & 4/7 \\ 3/7 & -5/7 \end{pmatrix}
\]

(d) We are given the matrix

\[
D = \begin{pmatrix} 3 & -5 & 3 \\ 2 & 1 & -7 \\ -10 & 4 & 5 \end{pmatrix}
\]

What do we need to find?

The inverse matrix \(D^{-1} \) and to find \(D^{-1} \) we have to evaluate the determinant and the adjoint of \(D \).

\[
\det \begin{pmatrix} 3 & -5 & 3 \\ 2 & 1 & -7 \\ -10 & 4 & 5 \end{pmatrix} = 3 \det \begin{pmatrix} 1 & -7 \\ 4 & 5 \end{pmatrix} - (-5) \det \begin{pmatrix} 2 & -7 \\ -10 & 5 \end{pmatrix} + 3 \det \begin{pmatrix} 2 & 1 \\ -10 & 4 \end{pmatrix}
\]

\[
= 3[(1 \times 5) - (4 \times (-7))] + 5[(2 \times 5) - (10 \times 7)] + 3[(2 \times 4) - (-10 \times 1)]
\]

\[
= -147
\]

Next we find \(\text{adj}(D) \), which is the cofactor matrix transposed. The cofactor matrix can be obtained using the method described in solution 7. Thus
Complete Solutions to Exercises 6.2

\[
C = \begin{bmatrix}
33 & 60 & 18 \\
37 & 45 & 38 \\
32 & 27 & 13 \\
\end{bmatrix}
\]

Transposing this gives \(adjA \)

\[
adjA = C^T = \begin{bmatrix}
33 & 37 & 32 \\
60 & 45 & 27 \\
18 & 38 & 13 \\
\end{bmatrix}
\]

By (6.13) we have

\[
D^{-1} = -\frac{1}{147} \begin{bmatrix}
33 & 37 & 32 \\
60 & 45 & 27 \\
18 & 38 & 13 \\
\end{bmatrix}
\]

6. (a) Since there are two zeros in the second row it is easier to expand along this row. Remember the place signs start with + and then alternate.

\[
\det \begin{bmatrix}
2 & 3 & 5 \\
0 & 0 & 6 \\
1 & 5 & 3 \\
\end{bmatrix} = -0 \det \begin{bmatrix}
3 & 5 \\
5 & 3 \\
\end{bmatrix} + 0 \det \begin{bmatrix}
2 & 5 \\
1 & 3 \\
\end{bmatrix} - 6 \det \begin{bmatrix}
2 & 3 \\
1 & 5 \\
\end{bmatrix}
= 0 + 0 - 6[(2 \times 5) - (1 \times 3)] = -42
\]

(b) Similarly since there is a zero along the bottom row, expand along this row.

\[
\det \begin{bmatrix}
6 & 7 & 1 \\
1 & 3 & 2 \\
0 & 1 & 5 \\
\end{bmatrix} = 0 \det \begin{bmatrix}
7 & 1 \\
3 & 2 \\
\end{bmatrix} - 1 \det \begin{bmatrix}
6 & 1 \\
1 & 2 \\
\end{bmatrix} + 5 \det \begin{bmatrix}
6 & 7 \\
1 & 3 \\
\end{bmatrix}
= 0 - 1[(6 \times 2) - 1] + 5[(6 \times 3) - (1 \times 7)] = 44
\]

(c) Expand along the first column since it contains two zeros:

\[
\det \begin{bmatrix}
1 & 5 & 1 \\
0 & 3 & 7 \\
0 & 2 & 9 \\
\end{bmatrix} = 1 \det \begin{bmatrix}
3 & 7 \\
2 & 9 \\
\end{bmatrix} - 0 \det \begin{bmatrix}
5 & 1 \\
2 & 9 \\
\end{bmatrix} + 0 \det \begin{bmatrix}
5 & 1 \\
3 & 7 \\
\end{bmatrix}
= 1[(3 \times 9) - (2 \times 7)] - 0 + 0 = 13
\]

(d) Expanding along the second column

\[
\det \begin{bmatrix}
9 & 5 & 1 \\
13 & 0 & 2 \\
11 & 0 & 3 \\
\end{bmatrix} = -5 \det \begin{bmatrix}
13 & 2 \\
11 & 3 \\
\end{bmatrix}
= -5[(13 \times 3) - (11 \times 2)] = -85
\]

7. (a) The triangle given by (0, 0), (3, 2), (7, -4) is illustrated below:
By using the formula in the question we have
\[
\frac{1}{2} \det \begin{pmatrix} 0 & 0 & 1 \\ 3 & 2 & 1 \\ 7 & -4 & 1 \end{pmatrix} = \frac{1}{2} \left[1 \times \det \begin{pmatrix} 3 & 2 \\ 7 & -4 \end{pmatrix} \right] = \frac{1}{2} (-12 - 14) = -13
\]

Area = $-13 = 13$ units2.

(b) The triangle given by $(-3, 2), (2, 6), (8, -3)$ is illustrated below;

The area is given by
\[
\frac{1}{2} \det \begin{pmatrix} -3 & 2 & 1 \\ 2 & 6 & 1 \\ 8 & -3 & 1 \end{pmatrix} = \frac{1}{2} \left[-3 \times \det \begin{pmatrix} 6 & 1 \\ -3 & 1 \end{pmatrix} - 2 \det \begin{pmatrix} 2 & 1 \\ 8 & 1 \end{pmatrix} + \det \begin{pmatrix} 2 & 6 \\ 8 & -3 \end{pmatrix} \right] \\
= \frac{1}{2} \left[-3(6 + 3) - 2[2 - 8] + [-6 - 48] \right] \\
= \frac{1}{2} \left[-3(9) - 2[-6] - 54 \right] = \frac{1}{2}(-69) = -34.5
\]

Area = $-34.5 = 34.5$ units2.

(c) We are given the points $(-2, -1), (1, 5)$ and $(0.5, 4)$ which are illustrated below:
What is the area in this case?

Area is zero because we have **no** triangle. Check that
\[
\frac{1}{2} \begin{vmatrix} -2 & -1 & 1 \\ 1 & 5 & 1 \\ 0.5 & 4 & 1 \end{vmatrix} = 0.
\]

All the points lie on a line or we say the three points are **collinear** and we can use the determinate to test if given points are **collinear** (lie on one line). We conclude that if
\[
det \begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix} = 0
\]
then \((x_1, y_1), (x_2, y_2), (x_3, y_3)\) are **collinear**.

8. (a) We need to find the equation through the points \((1, 2)\) and \((5, 6)\):
Substituting \(x_1 = 1, y_1 = 2\) and \(x_2 = 5, y_2 = 6\) into the given formula:
\[
det \begin{pmatrix} x & y & 1 \\ 1 & 2 & 1 \\ 5 & 6 & 1 \end{pmatrix} = -4 - 4x + 4y = 0 \quad \Rightarrow \quad y = x + 1
\]

We can plot this:

(b) Similarly we have to find the equation through the points \((-3, 7)\) and \((10, 10)\):
Substituting \(x_1 = -3, \ y_1 = 7 \) and \(x_2 = 10, \ y_2 = 10 \) into the given formula:

\[
\det \begin{pmatrix} x & y & 1 \\ -3 & 7 & 1 \\ 10 & 10 & 1 \end{pmatrix} = 13y - 3x - 100 = 0 \quad \Rightarrow \quad y = \frac{1}{13}(3x + 100)
\]

We can plot this:

(c) Need to find the equation through the points \((-3, 7)\) and \((9, -21)\):
Substituting \(x_1 = -3, \ y_1 = 7 \) and \(x_2 = 9, \ y_2 = -21 \) into the given formula:

\[
\det \begin{pmatrix} x & y & 1 \\ -3 & 7 & 1 \\ 9 & -21 & 1 \end{pmatrix} = 28x + 12y = 0 \quad \Rightarrow \quad y = -\frac{28}{12}x = -\frac{7}{3}x
\]

We can plot this:

9. The place sign of \(a_{31} \) is \((-1)^{3+1} = (-1)^4 = 1\). The place sign of \(a_{46} \) is

\((-1)^{5+6} = (-1)^{11} = -1\)

The place sign of \(a_{62} \) is \((-1)^{6+2} = (-1)^8 = 1\). The place sign of \(a_{65} \) is \((-1)^{5+6} = -1\).

Since we have a 6 by 6 matrix therefore there is no \(a_{71} \) entry in matrix \(A \).

10. The place sign of \(a_{nm} \) is equal to \((-1)^{m+n} = (-1)^{m+n} \) and \((-1)^{m+n} \) is the place sign of \(a_{nm} \).
Hence we have our result.

\[
\begin{pmatrix} a & b & c & d \\
0 & 0 & 0 & 0 \\
e & f & g & h \\
i & j & k & l
\end{pmatrix}
\]

11. To find \(\det \begin{pmatrix} k & 1 & 2 \\
0 & k & 2 \\
5 & -5 & k
\end{pmatrix} \) we expand along the second row. Why?

Because all the entries along the second row is zero therefore \(\det(A) = 0 \).

12. We need to find the value of \(k \) where \(\det(A) \neq 0 \) [Not Zero]. Easier to find the values of \(k \) where \(\det(A) = 0 \):

\[
\det \begin{pmatrix} k & 1 & 2 \\
0 & 2 & 2 \\
5 & -5 & 2
\end{pmatrix} = 0 + k \det \begin{pmatrix} 2 & 2 \\
5 & k
\end{pmatrix} - 2 \det \begin{pmatrix} 1 & 1 \\
5 & -5
\end{pmatrix}
\]

\[
= k(k^2 - 10) - 2(-5k - 5)
\]

\[
= k^3 - 10k + 10k + 10 = k^3 + 10 = 0
\]

The matrix in invertible for all real values of \(k \) apart from where \(k^3 + 10 = 0 \) or \(k^3 = -10 \).

13. Expanding along the first row:

\[
\det \begin{pmatrix} 1 & 1 & 1 \\
x & y & z \\
x^2 & y^2 & z^2
\end{pmatrix} = \det \begin{pmatrix} y & z \\
x^2 & z^2
\end{pmatrix} - \det \begin{pmatrix} x & z \\
x^2 & z^2
\end{pmatrix} + \det \begin{pmatrix} x & y \\
x^2 & y^2
\end{pmatrix}
\]

\[
= (yz^2 - y^2z) - (xz^2 - x^2z) + (xy^2 - x^2y)
\]

\[
= yz^2 - y^2z - xz^2 + x^2z + xy^2 - x^2y
\]

Expanding the Right-Hand Side of the given result, which is \((x - y)(y - z)(z - x)\), yields

\[
(x - y)(y - z)(z - x) = (xy - xz - y^2 + yz)(z - x)
\]

\[
= xyz - x^2y - xz^2 - y^2z + xy^2 + yz^2 - xyz
\]

\[
= yz^2 - y^2z - xz^2 + x^2z + xy^2 - x^2y
\]

Comparing our answers gives our required result.

14. We need to find the absolute value of the following determinant:

\[
\det \begin{pmatrix} 1 & 2 & 7 \\
2 & 3 & 10 \\
1 & 5 & -1
\end{pmatrix} = -7
\]

The volume is given by \(|-7| = 7\) unit\(^3\).

15. We need to show that the determinant of the rotational matrix \(R \) is equal to 1:

\[
\det \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\
-\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1
\end{pmatrix} = \cos^2(\theta) + \sin^2(\theta) = 1
\]
The determinant of one means that the volume of the transformed object has not changed as we would expect when an object has been rotated.

16. We have
\[
\det(J) = \det \begin{pmatrix} \cos(\theta) & -r \sin(\theta) \\ \sin(\theta) & r \cos(\theta) \end{pmatrix}
\]
\[
= r \cos^2(\theta) + r \sin^2(\theta) = r \left[\cos^2(\theta) + \sin^2(\theta) \right] = r(1) = r
\]

17. We are given that
\[
\det \begin{pmatrix} \cos(\theta) \sin(\phi) & -\rho \sin(\theta) \sin(\phi) & \rho \cos(\theta) \cos(\phi) \\
\sin(\theta) \sin(\phi) & \rho \cos(\theta) \sin(\phi) & \rho \sin(\theta) \cos(\phi) \\
\cos(\phi) & 0 & -\rho \sin(\phi) \end{pmatrix}
\]
\[
= \begin{vmatrix} \cos(\phi) \end{vmatrix} \begin{vmatrix} -\rho \sin(\theta) \sin(\phi) & \rho \cos(\theta) \cos(\phi) \\
\rho \cos(\theta) \sin(\phi) & \rho \sin(\theta) \cos(\phi) \end{vmatrix} + \begin{vmatrix} -\rho \sin(\phi) \end{vmatrix} \begin{vmatrix} \cos(\theta) \sin(\phi) & -\rho \sin(\theta) \sin(\phi) \\
\sin(\theta) \sin(\phi) & \rho \cos(\theta) \sin(\phi) \end{vmatrix}
\]
\[
= \begin{vmatrix} \cos(\phi) \end{vmatrix} \left[-\rho^2 \sin^2(\theta) \sin(\phi) \cos(\phi) - \rho^2 \cos^2(\theta) \cos(\phi) \sin(\phi) \right] + \begin{vmatrix} -\rho \sin(\phi) \end{vmatrix} \left[\rho \cos^2(\theta) \sin^2(\phi) + \rho \sin^2(\theta) \sin^2(\phi) \right]
\]
\[
= -\rho^2 \left[\cos^2(\phi) \sin(\phi) \left[\sin^2(\theta) + \cos^2(\theta) \right] + \sin(\phi) \sin^2(\phi) \left[\sin^2(\theta) + \cos^2(\theta) \right] \right]
\]
\[
= -\rho^2 \sin^2(\phi) \cos^2(\phi) + \sin^2(\phi) \sin^2(\phi) = -\rho^2 \sin(\phi)
\]
Taking the modulus of this gives \(\rho^2 \sin(\phi) \).

18. We have
\[
W(1, \cos(x), \sin(x)) = \det \begin{pmatrix} 1 & \cos(x) & \sin(x) \\ 0 & -\sin(x) & \cos(x) \\ 0 & -\cos(x) & -\sin(x) \end{pmatrix}
\]
\[
= \sin^2(x) + \cos^2(x) = 1 \quad \text{[Expanding along the first column]}
\]

19. We need to prove for every natural number \(n \) that \(\det(I_n) = 1 \). Remember \(I_n \) is the \(n \times n \) identity matrix. We use proof by induction. \textit{What is the procedure for proof by induction?}

(i) Prove the result for a base case \(n_0 \).
(ii) Assume the result is true for \(n = k \).
(iii) Prove the result for \(n = k + 1 \).

\textit{Proof.}

\textbf{Step (i):}

For \(n = 2 \) we have the identity \(I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) and clearly
Complete Solutions to Exercises 6.2

\[\det(I_2) = \det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 \]

Hence the result is true for \(n = 2 \).

Step (ii):
Assume the result is true for \(n = k \) that is \(\det(I_k) = 1 \).

Step (iii):
Need to prove it for \(n = k + 1 \) that is required to prove \(\det(I_{k+1}) = 1 \).

\(I_{k+1} \) is the \(k + 1 \) by \(k + 1 \) identity matrix:

\[
I_{k+1} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

To find the determinant of \(I_{k+1} \) we can expand along the first row which is 1 times the determinant of the remaining matrix after deleting the first row and column. The remaining matrix is \(I_k \) and by assumption we have \(\det(I_k) = 1 \) therefore

\[
\det(I_{k+1}) = 1 \times 1 = 1
\]

Hence we have proven our result by induction.

\[\blacksquare \]

20. **Proof.** Since \(A \) is invertible we have \(AA^{-1} = I \) therefore \(\det(AA^{-1}) = \det(I) = 1 \) By Question 19

\[\blacksquare \]

21. **Proof.**
Expanding along the zero row or column gives

\[
0 \det(\) + 0 \det(\) + 0 \det(\) + \cdots + 0 \det(\) = 0
\]

Hence our result.

\[\blacksquare \]

22. **Proof.**

Let \(A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \) then by expanding along the first row and using

(6.7)

\[
\det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + \cdots + a_{1n}C_{1n}
\]

we have

\[
\det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + \cdots + a_{1n}C_{1n}
\]

Taking the transpose of matrix \(A \) we have \(A^T = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix} \) Expanding along the first column of the transposed matrix gives
\[\det(A^T) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + \cdots + a_{nn}C_{nn} \]

Note that the cofactors are identical because we delete the same elements of the matrix whether we expand along the first row of matrix \(A \) or the first column of the transposed matrix \(A^T \).

Hence \(\det(A^T) = \det(A) \).

\[\Box \]

23. **Proof.**

Consider the matrix \(B \) obtained from matrix \(A \) by multiplying the \(i \)th row by a scalar \(k \).

\[
\begin{align*}
A &= \begin{pmatrix}
a_{i1} & a_{i2} & \cdots & a_{in} \\
\vdots & \vdots & \ddots & \vdots \\
a_{ni1} & a_{ni2} & \cdots & a_{nin}
\end{pmatrix} \quad \text{and} \\
B &= \begin{pmatrix}
a_{i1} & a_{i2} & \cdots & a_{in} \\
\vdots & \vdots & \ddots & \vdots \\
ka_{i1} & ka_{i2} & \cdots & ka_{in}
\end{pmatrix}
\end{align*}
\]

We can find the determinant of matrix \(B \) by expanding along the \(i \)th row and using (6.8):

\[
\det(B) = ka_{i1}C_{i1} + ka_{i2}C_{i2} + ka_{i3}C_{i3} + \cdots + ka_{in}C_{in}
\]

\[
= k\left(a_{i1}C_{i1} + a_{i2}C_{i2} + a_{i3}C_{i3} + \cdots + a_{in}C_{in} \right)
\]

\[
= k\det(A)
\]

Hence we have our required result, that is \(\det(B) = k \det(A) \).

\[\Box \]

24. Need to prove \(\det(kA) = k^n \det(A) \).

Proof.

Let \(A_1 \) be the matrix obtained from \(A \) by multiplying a row by \(k \). Then by result of question 23 we have \(\det(A_1) = k \det(A) \).

Let \(A_2 \) be the matrix obtained from \(A_1 \) by multiplying a non-\(k \) row by \(k \). Then by result of question 23 we have

\[
\det(A_2) = k \det(A_1) = kk \det(A) = k^2 \det(A)
\]

Continuing in this manner we obtain a matrix \(A_n \) from \(A_{n-1} \) by multiplying the last non-\(k \) row by \(k \). Note that to obtain the matrix \(A_n \) we need to multiply each of the \(n \) rows by the scalar \(k \). We have

\[
\det(A_n) = k \det(A_{n-1}) = kk \det(A_{n-2}) = kk \cdots k \det(A) = k^n \det(A)
\]

We have proven that \(\det(kA) = k^n \det(A) \) where \(A \) is a \(n \) by \(n \) matrix.

\[\Box \]